
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/366215852

Single and combined effects of Pythium oligandrum Po37 and a consortium of

three rhizobacterial strains on Sclerotinia stem rot severity and tomato

growth promotion

Article  in  JOURNAL OF PLANT PATHOLOGY · December 2022

CITATIONS

0
READS

62

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Verticillium races in Tunisia View project

Chemical bioactive compounds View project

Ouhaibi Ben Abdeljalil Nada

High Agronomic Institute of Chott Mariem

15 PUBLICATIONS   100 CITATIONS   

SEE PROFILE

Jessica Vallance

French National Institute for Agriculture, Food, and Environment (INRAE)

82 PUBLICATIONS   1,472 CITATIONS   

SEE PROFILE

Jonathan Gerbore

Biovitis

48 PUBLICATIONS   564 CITATIONS   

SEE PROFILE

Mejda Daami-Remadi

Regional Research Centre on Horticulture and Organic Agriculture, Chott-mariem,…

283 PUBLICATIONS   2,816 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ouhaibi Ben Abdeljalil Nada on 13 December 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/366215852_Single_and_combined_effects_of_Pythium_oligandrum_Po37_and_a_consortium_of_three_rhizobacterial_strains_on_Sclerotinia_stem_rot_severity_and_tomato_growth_promotion?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/366215852_Single_and_combined_effects_of_Pythium_oligandrum_Po37_and_a_consortium_of_three_rhizobacterial_strains_on_Sclerotinia_stem_rot_severity_and_tomato_growth_promotion?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Verticillium-races-in-Tunisia?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Chemical-bioactive-compounds?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ouhaibi-Nada-2?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ouhaibi-Nada-2?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/High_Agronomic_Institute_of_Chott_Mariem?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ouhaibi-Nada-2?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jessica-Vallance?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jessica-Vallance?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/French_National_Institute_for_Agriculture_Food_and_Environment_INRAE?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jessica-Vallance?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Gerbore?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Gerbore?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan-Gerbore?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mejda-Daami-Remadi?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mejda-Daami-Remadi?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mejda-Daami-Remadi?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ouhaibi-Nada-2?enrichId=rgreq-be1f52f7d1b38339120220a6a47fa807-XXX&enrichSource=Y292ZXJQYWdlOzM2NjIxNTg1MjtBUzoxMTQzMTI4MTEwNzAwNDYyNUAxNjcwOTIzODQ3OTk3&el=1_x_10&_esc=publicationCoverPdf


Vol.:(0123456789)1 3

Journal of Plant Pathology 
https://doi.org/10.1007/s42161-022-01241-9

ORIGINAL ARTICLE 

Single and combined effects of Pythium oligandrum Po37 
and a consortium of three rhizobacterial strains on Sclerotinia stem rot 
severity and tomato growth promotion

Nada Ouhaibi Ben Abdeljalil1,2 · Jessica Vallance3 · Jonathan Gerbore4 · Mejda Daami‑Remadi2 · Patrice Rey3,5

Received: 21 June 2022 / Accepted: 16 October 2022 
© The Author(s) under exclusive licence to Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2022

Abstract
Individual plant growth-promoting rhizobacterial (PGPR) strains (Bacillus thuringiensis B2, Bacillus subtilis B10 and Entero-
bacter cloacae B16) and their combination were used, with or without Pythium oligandrum, against Sclerotinia sclerotiorum. 
In vitro, all biological control agents (BCAs) reduced successfully hyphal growth of the targeted pathogenic fungus. They 
displayed antifungal activity by more than 50% compared to controls. In planta trials were conducted two years in the row 
and led to a significant decrease in stem rot severity two months after the antagonist’s application onto infected tomato plants. 
The reduction reached 75% using rhizobacterial mixtures and 72% using P. oligandrum alone, compared to controls. The 
plant growth-promoting potential of the three-strain consortium and P. oligandrum was also assessed. Increased height in 
disease-free plants was obtained with rhizobacterial mixtures (60%) compared to P. oligandrum (47%). The BCA’s mixture 
increased the height of treated plants inoculated with S. sclerotiorum (up to 80%) compared to inoculated and untreated plants. 
The fresh weight of the aerial parts and roots of disease-free plants was increased by 42 and 30% over control following their 
treatment with mixtures of rhizobacteria and P. oligandrum alone, respectively. On plants inoculated with S. sclerotiorum 
in both trials, the highest growth-enhancing effect was achieved using the combined treatment based on P. oligandrum and 
the three-strain rhizobacterial consortium (Po37 + B2 + B10 + B16). The rhizospheric microbial communities were assessed 
using Single Strand Conformational Polymorphism (SSCP). Differences in the genetic structure of the fungal and bacterial 
communities were observed following treatments applied in both trials.

Keywords Biocontrol · Microbial community · Plant growth · Sclerotinia stem rot · Strain mixture · Tomato

Introduction

Several diseases affect tomato plants, some causing great 
damage such as anthracnose, fusariosis, and white mold. The 
latter one is caused by Sclerotinia sclerotiorum Lib. and has 
a wide host range consisting of approximately 278 genera 
and 408 plant species (Gupta et al. 2020). The pathogen rest-
ing structures, myceliogenically germinating sclerotia, are 
the initial source of infection of tomato plants leading to the 
development of a soft rotting of the aerial parts in contact 
with the soil line (Baturo-Cieśniewska et al. 2018). Disease 
management may be accomplished using conventional cul-
tural practices (no-tillage, crop rotation, intercropping), and 
intensive use of chemicals (Juliatti et al. 2019). This last 
approach is incredibly expensive and associated with serious 
ecological impacts attributed to taster toxic residues (Sabaté 
et al. 2018). These constraints have increased the interest to 
develop safer alternatives such as biological control. This 
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approach relies on the use of beneficial microbes as alterna-
tives to chemical pesticides and fertilizers (Ab-Rahman et al. 
2018; Niu et al. 2020).

Successful disease suppression was achieved using vari-
ous microbial agents or formulations including bacteria 
(Ouhaibi Ben Abdeljalil et al. 2016a; Schmidt et al. 2021), 
fungi (Juliatti et al. 2019; Schmidt et al. 2021), and bio-
fungicides (Macena et al. 2020). It is necessary to look for 
organisms suitable for use in biological control and to study 
their mechanisms of action and the optimal conditions for 
their application in plant protection and integrated manage-
ment systems. One of such agents is the oomycete, Pythium 
oligandrum (Gerbore et al. 2014) which has received con-
siderable attention as a potential biocontrol agent because 
of its ability to destroy a wide range of fungal and oomycete 
disease-causing pathogens (Gerbore et al. 2014; Baturo-
Cieśniewska et al. 2018; Yacoub et al. 2020).

Microbial formulations based on Bacillus, Enterobacter, 
and P. oligandrum strains are attractive for commercialization 
due to their sustainable shelf life, their capacity to promote 
plant growth and their ability to produce antibiotics that are 
effective against various plant pathogens including S. scle-
rotiorum (Ouhaibi Ben Abdeljalil et al. 2016a; Farzand et al. 
2019; Yacoub et al. 2020; Sharf et al. 2021).

Biocontrol agents should be as effective and reliable 
as chemical pesticides in the myriad microenvironments 
that exist in soil and on plant surfaces where disease con-
trol interactions occur (Hu et al. 2019). Most biocontrol 
approaches have used single biocontrol agents as antago-
nists to control a single (Miethling et al. 2000) or various 
pathogens (Berg and Smalla 2009; Saraf et al. 2014). This 
may partially account for the reported inconsistent perfor-
mances of biocontrol formulations because single bio-agents 
are not likely to be active against various bio-aggressors 
in all soil environments in which they are released. Thus, 
it is thought that collectively a combination of microbes, 
with different environmental adaptations and mechanisms 
of action against target pathogens, is more likely to express 
important traits for more effective disease control over many 
different environmental conditions and agricultural eco-
systems than an individual microbe (Guijarro et al. 2018; 
Ouhaibi Ben Abdeljalil et al. 2021).The success associated 
with the integration of biocontrol agents is attributed to their 
possible synergistic effects (Pylak et al. 2019). In past trials, 
a microbial consortium composed of Bacillus subtilis str. 
B10 (KT921327), B. thuringiensis str. B2 (KU158884) and 
Enterobacter cloacae str. B16 (KT921429) had efficiently 
controlled S. sclerotiorum-induced stem rot on tomatoes 
(Ouhaibi Ben Abdeljalil et al. 2016b, c). This same con-
sortium exhibited interesting potential in a previous study 
when mixed with P. oligandrum against Rhizoctonia root rot 
on two tomato cultivars based on two consecutive years of 
testing (Ouhaibi Ben Abdeljalil et al. 2021).

In the present study, our objective was to assess the ability 
of this bacterial consortium, mixed or not with P. oligan-
drum, to control Sclerotinia stem rot and to stimulate the 
growth of tomato based on trials of two consecutive years. 
Possible changes occurring in the rhizospheric microbial 
community following these biological treatments were also 
investigated using the Single-Stranded Conformational Poly-
morphism (SSCP) technique.

Material and methods

Rhizobacteria traits and growth conditions

Three plant growth-promoting rhizobacterial (PGPR) 
strains, i.e. B. subtilis str. B10 (KT921327), B. thuringiensis 
str. B2 (KU158884) and E. cloacae str. B16 (KT921429), 
were used in the present study. They were originally recov-
ered from the rhizosphere of visibly healthy (symptomless) 
tomato plants and were subjected to biochemical charac-
terization and molecular identification in a previous study 
(Ouhaibi Ben Abdeljalil et al. 2016a). They were selected 
based on their antifungal and/or plant growth-promoting 
abilities (Ouhaibi Ben Abdeljalil et al. 2016b). Their spe-
cific traits are summarized in Table 1. They were routinely 
cultured on Nutrient Agar medium and stock cultures were 
maintained at -20 °C in Luria Bertani (LB) broth amended 
with 15% glycerol.

Pythium oligandrum inoculum preparation

Inoculum of P. oligandrum Po37 strain (oospores-mycelium 
homogenates) used in planta biocontrol assays was prepared 
and kindly provided by Biovitis (Saint Etienne de Chomeil, 
France). Its concentration was adjusted to  104 oospores/mL 
before being applied in planta.

Sclerotinia sclerotiorum culture conditions

The target pathogen was originally recovered from tomato 
plants exhibiting typical symptoms of white mold and/or 
stem rot disease. It was gratefully provided by the Plant 
Pathology Laboratory of the Regional Research Centre on 
Horticulture and Organic Agriculture of Chott-Mariem in 
Tunisia, as previously described in Ouhaibi Ben Abdeljalil 
et al. (2016a).

For in planta assays, the S. sclerotiorum isolate was cul-
tured on Potato Dextrose Agar (PDA) medium amended 
with Streptomycin sulfate at 300 mg/L) (w/v) and incu-
bated at 28 °C for five days. Mycelia were scraped at the 
surface of 10 Petri dishes and then mixed in 1 L of sterile 
distilled water (SDW) (Ouhaibi Ben Abdeljalil et al. 2016b). 
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Mycelial fragment density was assessed using a hemacytom-
eter and adjusted to  108 mycelial fragments/mL.

Assessment of the in vitro antifungal activity

Potential of PGPR strains

The ability of the three rhizobacterial strains to suppress S. 
sclerotiorum mycelial growth was evaluated using the dual 
culture technique. A loopful of each bio-agent (48-h-old cul-
ture) was added to 100 mL Nutrient Broth (NB) medium, 
then placed on a rotary shaker (150 rpm) and incubated 
at 28 ± 2 °C for 2 days. A 5-day-old fungal plug (6 mm in 
diameter) was placed on the side of a Petri plate (90 mm in 
diameter) containing a PDA medium. Then, 10 μL taken 
from 48-h-old bacterial suspension (~  108 CFU/mL) was 
deposited into a well (6 mm in diameter, 3 mm in depth) on 
the opposite side. Plates inoculated with fungal agar plugs 
and treated with the same volume of SDW served as control. 
The assays were performed in triplicate.

After incubation at 28 °C for 7 days, the diameter of the 
pathogen colony and the inhibition zone were measured and 
compared with the untreated control. The percentage of fun-
gal inhibition (FI) was calculated according to Rostami et al. 
(2013) as follows: GI (%) = (C- t)/ C × 100; where C is the 
diameter of the pathogen colony in control plates and t is the 
colony diameter in treated plates.

Potential of Pythium oligandrum

The dual culture technique was also used in this antago-
nism study. A mycelial plug (6 mm in diameter) taken from 
7-day-old P. oligandrum Po37 culture was placed at one side 
of the Petri plate (90 mm in diameter) and another of S. 
sclerotiorum (6 mm in diameter), removed from a 5-day-old 
culture, was placed at the opposite side. For control plates, 
only pathogen plugs were placed on the PDA medium. Then, 
the plates were incubated at 25 °C for 5 days.

The diameter of S. sclerotiorum colony was measured and 
the mycelial growth inhibition percentage was calculated as 
described above. For the elucidation of hyphal interactions 
between the antagonist and the target pathogen, samples of 
mycelium were taken from the zone of interaction of the two 
agents and examined under an optical microscope followed 
by the taking of micrographs (Horner et al. 2012).

Combined biocontrol treatment in pot experiments

Plant material and growth condition

Tomato cv. Rio Grande seedlings, a cultivar known for its 
susceptibility to S. sclerotiorum infection, were used for 
all the in vivo trials. Seeds were surface sterilized with 3% Ta
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sodium hypochlorite for 3 min and immediately rinsed with 
SDW three times. Next, they were sowed in alveolus plates 
(7 × 7 cm) filled with sterilized peat. Plates were placed 
under controlled conditions with day and night photoperiod 
and temperatures ranging between 21 − 18 ± 2 °C, respec-
tively. They were watered regularly, to avoid water stress, 
until reaching the two-true-leaf growth stage.

Combined treatment preparation and co‑inoculation 
assessment

Stock cultures of rhizobacteria were cultured onto Nutrient 
Agar (NA) medium and incubated at 28 °C for 48 h. After 
the incubation period, a bacterial colony of each strain was 
suspended in NB (300 mL) and incubated in a rotary shaker 
(175 rpm) for two days at 28 °C. Then, the 48-h-old cell 
culture was diluted in 1 L of SDW and adjusted to  108 CFU/
mL (Wu et al. 2014). For the preparation of mixed biocon-
trol formulations, equal volumes of each rhizobacterial cell 
suspension were mixed, and the consortium obtained (3B) 
was tested alone or in mixture with P. oligandrum inoculum 
(3B + Po37).

Tomato seedlings used for the trial were deprived of 
water two days before the bioassay. Seedling treatment was 
performed as substrate drench around the stem using 30 mL 
of the rhizobacterial consortium alone or in a mixture with 
P. oligandrum. After one week, S. sclerotiorum inoculum 
(30 mL) was sprayed at the same level on each seedling. 
The next day, seedlings were transplanted into pots (16 cm 
in diameter) containing pathogen-infected peat (Benchabane 
et al. 2000; Le Foch et al. 2003).

Negative controls (uninoculated control seedlings) were 
treated with SDW only, while positive control plants were 
inoculated with S. sclerotiorum and treated with SDW or 
with a commercial fungicide, i.e.  Previcur® (Bayer, France, 
propamocarb hydrochloride 722 g/L) applied at 0.5 mL/L. 
Uninoculated seedlings challenged with the rhizobacterial 
consortium and/or P. oligandrum were also used for com-
parison and the elucidation of their plant growth-promoting 
potential. This method of inoculation was chosen to avoid 
any trauma to tomato seedlings following root or stem injury.

Pots were grown under controlled conditions (60–70% 
relative humidity, 13/11  h light/dark photoperiod at 
21/18 ± 2 °C light/dark temperature) and the whole experi-
ment was repeated for two consecutive years (2012 and 
2013).

Experimental layout

For the experiment, 135 tomato seedlings were used and 
distributed between nine treatments. The experimental 
design consisted of a randomized complete block design 
with 15 seedlings per individual treatment, under the two 

trials (2012 and 2013). The different treatments were: (i) 
C: untreated control, (ii) Sc: inoculated with S. sclerotio-
rum and untreated, (iii) Sc + f: S. sclerotiorum-inoculated 
and treated with a commercial fungicide, i.e.  Previcur®, 
(iv) Po37: uninoculated and treated with P. oligandrum 
Po37, (v) Sc + Po37: inoculated with S. sclerotiorum 
and treated with P. oligandrum, (vi) 3B: uninoculated 
and treated with the rhizobacterial consortium, (vii) 
3B + Po37: uninoculated and treated with P. oligandrum 
and the rhizobacterial consortium, (viii) Sc + 3B: inocu-
lated with S. sclerotiorum and treated with the rhizobac-
terial consortium, (ix) Sc + 3B + Po37: inoculated with S. 
sclerotiorum and treated with P. oligandrum and the rhizo-
bacterial consortium.

Assessment of disease control and plant growth‑promoting 
potentials

At the end of the experiment (two months after the patho-
gen challenge), plants were uprooted, washed under run-
ning tap water to remove peat traces, and air-dried on fil-
ter papers. Parameters measured were plant height (cm) 
and fresh weight of aerial parts and roots (g) (Hassen and 
Labuschagne 2010). Disease severity was scored on roots 
based on a 0 − 5 scale where 0 = no symptoms, 1 = 0 − 25% 
root browning, 2 = 26 − 50% root browning, 3 = 51 − 75% 
root browning, 4 = 76 − 100% root browning and 5 = plant 
dieback (Takenaka et al. 2008). Disease incidence (DI) per-
centage was determined using the following equation:

Assessment of the shifts in the microbial communities 
following treatments

Characterization of the microbial (fungi and bacteria) 
communities’ structure and diversity was performed using 
profiles obtained by the CE-SSCP method, as previously 
described by Gerbore et al. (2014).

Sampling and DNA extraction

At the end of the experiment and the scoring of growth and 
severity parameters, 15 plants of each treatment were used 
for the characterization of the microbial community of roots 
following tested treatments.

Plants were uprooted gently from each pot to preserve 
the small feeder roots and were shaken to remove clumps of 
peat around the roots. Roots were cut into small fragments 
and crushed until further use for microbial and molecular 
analyses.

DI % = (Number of symptomatic plants ∕The total number of scored plants)

× 100.
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Total DNA was extracted as reported by Godon et al. 
(1997) with slight modifications. Briefly, root fragments 
were transferred into 2-mL polypropylene microcentrifuge 
tubes and kept frozen in a -80 °C freezer rack, then lyophi-
lized for 12 h before DNA extraction.

DNA was extracted from 60 mg of ground lyophilized 
root fragments. A volume of 600 μL of lysis buffer CTAB 
(1x) was added to each 2 mL tube and incubated at 65 °C for 
1 h. To remove proteins, 400 μL of chloroform-isoamyl alco-
hol (24/1, v/v) were added and tubes were shaken at 200 rpm 
for 10 min, then centrifuged at 13,000 rpm for 10 min at 
4 °C. Aqueous phases were transferred to new 2-mL tubes. 
Nucleic acids were precipitated by the addition of 330 mL of 
cold isopropanol and then kept at -20 °C overnight. Nucleic 
acids were recovered by centrifugation at 13,000 rpm at 4 °C 
for 10 min.

Supernatants were discarded and DNA finally were pel-
lets washed with 800 μL of ethanol 70%. After centrifuga-
tion at 13,000 rpm at 4 °C for 10 min, ethanol was discarded. 
Then DNA pellets were air-dried and re-suspended into 50 
μL of SDW. DNA extracts were then quantified with a nan-
odrop (ND-1000, Thermo scientific, Labtech) and normal-
ized at 10 ng/μL.

PCR‑SSCP analyses

For fingerprinting analyses using Single-Strand Conforma-
tion Polymorphism (SSCP), pairs of primers recognizing 
the V5–V6 region of the 16S rRNA gene, i.e. 799f /1115r 
(Redford et al. 2010), and the mitochondrial large subunit 
rDNA gene, i.e.ML1/ML2 (White et al.1990) were used 
respectively for bacteria and fungi.

DNA was amplified by PCR in a reaction mixture (25 μL 
final volume) consisting of 1 μL of DNA template (10 ng/
μL), 2.5 μL of Pfu buffer (10x), 2.5 μL of BSA (Bovine 
Serum Albumin) at 10 μg/μL (BioLabs), 1 μL of dNTP 
(10 mM), 0.5 μL of each primer, 0.5 μL of PfuTurbo (Strat-
agene) and 16.5 μL of sterile distilled water.

The cycling conditions for bacteria were: enzyme activa-
tion at 95 °C for 2 min; 25 cycles of denaturation at 95 °C for 
45 s; hybridization at 54 °C for 30 s; extension at 72 °C for 
1 min; and a final extension at 72 °C for 10 min. For fungi, 
the cycling parameters were 95 °C for 2 min, followed by 
35 cycles at 95 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min 
and a final extension at 72 °C for 10 min. The PCR products 
were visualized by 2% Tris–Borate-EDTA (TBE) agarose 
gel electrophoresis before SSCP analysis. The lengths of the 
fragments yielded by amplification were 250 bp and 350 pb 
for fungi and bacteria, respectively.

Single-Strand Conformation Polymorphism analyses 
were performed on an ABI PRISM 3130 genetic analyzer 
(Applied Biosystems) equipped with four 36-cm-long cap-
illaries. One microliter of a PCR product was mixed with 

18.8 µL Hi-Di formamide (Applied Biosystems) and 0.2 
µL of the Genescan 400 HD ROX standard internal DNA 
molecular size marker (Applied Biosystems). The sam-
ple mixture was denatured at 95 °C for 5 min, instantly 
iced (10 min) and then placed onto the instrument. CE-
SSCP is based on the electrophoretic mobility of single-
stranded DNA fragments. This mobility is distinct accord-
ing to their three-dimensional conformation. Samples were 
allowed to co-migrate with the fluorescent size standard 
(GeneScan 400 ROX) to allow the comparison of migra-
tion profiles between samples.

Statistical analyses

Analysis of experimental data was achieved by using one-
way analysis of variance (ANOVA) with Statistical Pack-
age for the Social Sciences (SPSS) software for Windows 
version 16.0.

Each of the in vitro or in vivo experiments was repeated 
twice in time. Data were analyzed according to a completely 
randomized design in which 9 treatments were tested (i.e. 15 
seedlings per individual treatment).

The means were separated using the Student–Newman–Keuls 
test to identify significant pair-wise differences at P ≤ 0.05. Cor-
relations between disease severity and plant growth parameters 
were analyzed using the bivariate Pearson’s test at P < 0.01.

SSCP patterns were aligned with Stat Fingerprints (ver-
sion 2.0) (Michelland et al. 2009) and were gathered in a sin-
gle numerical database before being statistically described 
by a global PCA using R software (version 2.15.2).

Results

Antifungal potential of tested microbial agents

Inhibitory effects of PGPR strains

The inhibitory effect against S. sclerotiorum hyphal extension 
was examined after its dual culture with the tested PGPR strains 
as compared to control plates (Fig. 1). After 5 days of incubation 
at 25 °C, a significant (P ≤ 0.05) decrease in the growth of the 
pathogen was observed following its confrontation with PGPR 
strains compared to the untreated control (Table 2). The in vitro 
growth of the pathogen was inhibited by 41, 46 and 54% respec-
tively by B. thuringiensis str. B2, B. subtilis str. B10, and E. cloa-
cae str. B16. When confronted with S. sclerotiorum colonies, 
tested bacterial strains led to the formation of growth-inhibition 
zones with radial dimensions (distance between pathogen and 
bio-agent colony) estimated at respectively 7.6, 9 and 10.6 mm 
for B16, B2, and B10 (Table 2).
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Inhibitory effects of Pythium oligandrum

Macroscopic evaluation ANOVA analysis revealed a sig-
nificant variation (P ≤ 0.05) in the diameter of S. sclerotio-
rum colony, measured after 5 days of incubation at 25 °C. 
P. oligandrum significantly inhibited the pathogen radial 
growth by more than 50% compared to the untreated con-
trol cultures.

After one week of incubation, the dual culture technique 
revealed that P. oligandrum was capable of overgrowing the 
pathogen colony.

Microscopic evaluation At the light microscope level, the 
whole process of antagonism formation was observed. 
Microscopic examination showed that P. oligandrum (P) 
densely coiled around hyphae of S. sclerotiorum (S). P. oli-
gandrum hyphae often coiled around the host (Fig. 2a), they 
grew parallel to the host and attached themselves to myce-
lium by forming hooks (Fig. 2a, arrow). In tip-to-host side 
interactions, the mycoparasite tips continued to grow after 

contact, they grew over the host hyphae, depending on the 
angle of contact (Fig. 2b).

After contact with P. oligandrum, the mycoparasite 
sometimes penetrated S. sclerotiorum mycelium (Fig. 2b, 
arrow). Then, at a later stage of the antagonistic process, 
several hyphae of S. sclerotiorum were strongly degraded 
and cytoplasm of pathogenic hyphae became empty, as well 
as pathogenic hyphae appeared as abnormally shaped, empty 
pleiomorphic shells.

Effect of microbial treatments tested

Disease suppression ability

Tested rhizobacterial consortium, applied alone or mixed 
with P. oligandrum, significantly (at P ≤ 0.05) reduced the 
severity of S. sclerotiorum-induced stem rot compared to 
the untreated and pathogen-infected tomato plants (control). 
However, all tomato plants not challenged with the patho-
gen remained symptomless and healthy throughout the two-
month experiment duration.

Disease incidence, estimated based on the presence of 
root browning, ranged from 27 to 100% in 2012 and from 
73 to 100% in 2013 (Table 3).

The rhizobacterial consortium, applied singly or in com-
bination with P. oligandrum, was found to be more efficient 
in reducing disease severity than the fungicide, during the 
two consecutive years of assays. Results given in Table 3 
showed that disease severity (DS) was lowered by 72 to 93% 
in 2012 and by 72 to 75% in 2013 compared to respectively 
52 and 49% using the fungicide control.

In 2012, the treatment composed of the three-strain con-
sortium combined with P. oligandrum exhibited significantly 
higher effectiveness in decreasing Sclerotinia stem rot sever-
ity compared to the treatment with P. oligandrum alone. No 
such difference was observed in 2013.

Fig. 1  In vitro growth inhibition of Sclerotinia sclerotiorum due to 
diffusible metabolites from tomato-associated rhizobacterial strains 
compared to untreated controls. a  Sclerotinia sclerotiorum control 

plate, b B10: Bacillus subtilis str. B10 (KT921327), c B16: Entero-
bacter cloacae str. B16 (KT921429) and d B2: Bacillus thuringiensis 
str. B2 (KU158884)

Table 2  Antifungal potential displayed by tomato-associated rhizo-
bacteria against Sclerotinia sclerotiorum mycelial growth under  
in vitro conditions using dual culture plate test, noted after 5 days of 
incubation at 25 °C

For each column, values followed by the same letter are not sig-
nificantly different according to Student–Newman–Keuls test (at 
P ≤ 0.05)

Biological  
treatments

Strains Colony 
diameter 
(mm)

Growth 
inhibition 
(%)

Inhibition 
zone (mm)

Untreated control C 90.00a 0 0.00c
Bacillus  

thuringiensis
B2 53.40b 41 10.60a

B. subtilis B10 45.60c 49 9.00ab
Enterobacter 

cloacae
B16 41.80c 54 7.60b
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Plant growth‑promoting ability

Plant height Results shown in Table 4 indicated that the 
treatment with the three-strain consortium and P. oligan-
drum had significantly (P ≤ 0.05) enhanced the plant growth 
during the two consecutive years of trials compared to the 
uninoculated and untreated control. The height increase 
varied from 47 − 62% and 49 − 60% depending on the treat-
ments tested in the 2012 and 2013 trials respectively, with 
the microbial consortium (Po37 + B2 + B10 + B16) being the 
most efficient (62% in 2012 and 60% in 2013).

Data provided in Table 4 showed that all treatments tested 
in both trials significantly (P ≤ 0.05) augmented the height 
of S. sclerotiorum-inoculated and treated plants compared 
to the inoculated and untreated ones. For both years, the 
increase in plant height was 80 − 82% compared to 51 
(2012) and 65% (2013) observed with the commercial 
fungicide  Previcur®. For both trials, the highest height-
increasing effect was obtained using the combined treat-
ment based on P. oligandrum and the three-strain rhizo-
bacterial consortium (Po37 + B2 + B10 + B16).

Aerial part growth Based on their comparative ability to 
enhance the growth of the aerial part, the rhizobacterial 
consortium and/or P. oligandrum significantly (P ≤ 0.05) 
increased the aerial part’s fresh weight (APFW) compared 
to the untreated and pathogen-free plants. Results illustrated 
in Table 4 showed that the increment in this growth param-
eter ranged from 5 to 42% during the first trial (2012) and 
from 18 to 55% in the second one (2013) where the com-
bined treatment (Po37 + B2 + B10 + B16) led to the highest 
parameter increase.

Data given in Table 4 also revealed that, in both trials, 
the APFW varied significantly (P ≤ 0.05) depending on 
the treatments tested. Indeed, all tomato plants inoculated 
with the pathogen and treated with the rhizobacterial con-
sortium, applied singly or in combination with P. oligan-
drum, showed a significant increase in their APFW com-
pared to S. sclerotiorum-inoculated and untreated control 
plants. The recorded APFW increment ranged from 34 
to 36% in 2012 and from 38 to 45% in 2013 compared to 
28% noted on Previcur®-treated and pathogen-inoculated 
plants.

Fig. 2  Scanning light micro-
graph of Pythium oligandrum 
hyphae interacting with those of 
Sclerotinia sclerotiorum. a Con-
densed coiling of P. oligandrum 
around a hypha of S. sclerotio-
rum. Then P. oligandrum hypha 
formed hooks and attached 
itself to S. sclerotiorum hypha 
(arrow). b Mycelial abnormal-
ity of S. sclerotiorum caused by 
the antimicrobial activity of P. 
oligandrum. The arrow shows 
digested zone with penetration 
sites. P: Pythium oligandrum 
Po37; S: Sclerotinia sclerotio-
rum 
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Root growth Data provided in Table 4 indicated that the 
root fresh weight (RFW), measured two months post-
planting, varied significantly (P ≤ 0.05) depending on 
the treatments tested. For disease-free plants, RFW was 
improved by 30 to 51% in 2012 and by 35 to 50% in 2013 

with the different treatments applied compared to the 
untreated control. The highest RFW increase was noted on 
plants treated with the three-strain rhizobacterial consor-
tium in 2012 (B2 + B10 + B16) (51%) and the combined 
treatment (B2 + B10 + B16 + Po37) (50%) in 2013.
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Fig. 3  Distribution of the fungal communities on the principal plans 
defined by the first two axes obtained in the  principal component 
analysis (PCA) of SSCP profiles depending on rhizobacterial treat-
ments (a) and Pythium oligandrum treatments (b) tested singly or as 
microbial consortium during 2013 trial. (a) The colors used here rep-
resent the profiles depending on tested treatments (3b: 3 tomato- 
associated rhizobacteria, applied as consortium (red); 3bpsc: 3 rhizo-
bacterial consortium mixed with P. oligandrum, against S. sclerotiorum 

(blue); inoculated and  untreated plants (green) and -: uninoculated 
and untreated plants (black)). (b) The colors used here represent (-p: 
P.  oligandrum (red); psc: P. oligandrum tested against S. sclerotio-
rum (blue); sc-: inoculated and untreated plants  (green) and -: unin-
oculated and untreated plants (black)). The variation (%) explained by 
each PCA axis is given in brackets. Ellipsoids draw the center of fac-
tors with 95% confidence

Table 3  Effect of a three-strain 
bacterial consortium mixed or 
not with Pythium oligandrum 
Po37 on Sclerotinia stem rot 
disease incidence and severity 
on tomato cv. Rio Grande 
plants compared to fungicide 
and untreated controls, noted 
60 days post-planting, based on 
two consecutive years of testing

For each column, values followed by the same letter are not significantly different according to Student–
Newman–Keuls test (at P ≤ 0.05)
* DI: Disease incidence; **DS: Disease severity
a  B2: Bacillus thuringiensis str. B2 (KU158884); B10: Bacillus subtilis str. B10 (KT921327) and B16: 
Enterobacter cloacae str. B16 (KT921429)
b  Fungicide-based treatment using Previcur® (Bayer, France, propamocarb hydrochloride 722 g/L) applied 
at 0.5 mL/L
c  Values in brackets (in %) indicate the percentage of disease severity decrease compared to the inoculated 
and untreated control plants

2012 2013

Biological treatments tested DI* (%) DS ** DI (%) DS

Untreated control 0 0d 0 0c
Pythium oligandrum Po37 0 0d 0 0c
B2 + B10 + B16 a 0 0d 0 0c
Po37 + B2 + B10 + B16 0 0d 0 0c
S. sclerotiorum-inoculated control 100 4.00a (0)c 100 4.00a (0)c

S. sclerotiorum + Po37 80.00 1.13c (72) 80.00 1.13b (72)
S. sclerotiorum + B2 + B10 + B16 26.67 0.27d (93) 86.66 1.00b (75)
S. sclerotiorum + Po37 + B2 + B10 + B16 41.67 0.40d (90) 73.33 1.00b (75)
S. sclerotiorum +  Fungicideb 100 2.00b (50) 80.00 1.27b (68)
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Regarding the comparative capacity to increase the 
RFW of tomato S. sclerotiorum-inoculated plants, the 
three-strain mixture combined with P. oligandrum 
(Po37 + B2 + B10 + B16) or P. oligandrum alone were the 
most effective treatments compared to pathogen-inoculated 
and untreated control in both trials. Results illustrated in 
Table 6 indicated that the root growth-promoting effect var-
ied from 24 to 58% in 2012 and 55 to 68% in 2013 respec-
tively versus 40 and 48% recorded on plants treated with 
the fungicide. Overall and in both trials, the greatest root 
growth-promoting effect was induced by the mixed treatment 
based on the rhizobacterial consortium and P. oligandrum 
(Po37 + B2 + B10 + B16).

Shifts occurring in the microbial communities 
structure following treatments

A total of 54 SSCP profiles were generated from the root 
samples collected from cv. Rio Grande tomato plants (27 in 
2012 and 27 in 2013). Based on the number of peaks and the 
relative height of the baseline, the SSCP profiles revealed 
complex microbial communities (data not shown).

Principal Component Analyses (PCAs) were studied to 
assess the genetic structure of the rhizospheric bacterial 
and fungal communities of tomato plants inoculated with 
S. sclerotiorum and treated with the rhizobacterial consor-
tium applied singly or in combination with P. oligandrum 
strain.

SSCP analyses of fungal community

The distributions of the samples on the principal plans gen-
erated by PCAs of fungal communities are represented in 
Fig. 3. Differences in fungal communities' genetic structure 
were observed with the P. oligandrum treatment applied 
alone or in combination with rhizobacteria during the 2013 
trial. PCA eigenvalues indicate that the first two principal 
components, Dim 1 and Dim 2, account for 69% of the total 
fungal variability in 2013.

These results allowed three main types of community 
structure to be delineated: (i) rhizobacteria applied as a con-
sortium in association with P. oligandrum, (ii) P. oligandrum 
treatment applied alone; and (iii) S. sclerotiorum inoculated 
and untreated plants.

SSCP structure of bacterial community

The distribution of samples on the principal plans gener-
ated by PCAs of bacterial communities is represented in 
Fig. 4. Differences in the genetic bacterial structure were 
observed during the two trials (2012 and 2013) depending 
on the rhizobacterial treatment.

PCA eigenvalues indicated that the first two principal 
components, Dim1 and Dim2, explained 75 and 77% of the 
total data variance respectively for 2012 and 2013. For both 
trials, the ellipses do not overlap when comparing plants 
inoculated with S. sclerotiorum only (sc_-) and treated by 
the consortium of rhizobacteria (sc_3b).

Table 4  Efficacy of the three-strain bacterial consortium, mixed or not with Pythium oligandrum Po37, on plant growth-promotingof tomato cv. 
Rio Grande noted 60 days post-planting, based on two consecutive years of testing

For each column, values followed by the same letter are not significantly different according to Student–Newman–Keuls test at P ≤ 0.05
* Values in brackets (in %) indicate the percentage of plant growth parameter increase as compared to S. sclerotiorum-inoculated and untreated 
controls
a B2: Bacillus thuringiensis str. B2 (KU158884); B10: Bacillus subtilis str. B10 (KT921327) and B16: Enterobacter cloacae str. B16 
(KT921429)
b Fungicide-based treatment using Previcur® (Bayer, France, propamocarb hydrochloride 722 g/L) applied at 0.5 mL/L
c APFW: Aerial Part Fresh Weight
d RFW: Root Fresh Weight

Biological treatments tested Plant height (cm) APFWc(g)c RFWc (g)d

Years of testing 2012 2013 2012 2013 2012 2013

Untreated control 28.13c (0)* 28.13e (0) 29.38c (0) 24.86c (0) 3.03c (0) 4.41de (0)
P. oligandrum Po37 53.27b (47) 55.47bc (49) 30.96bc(5) 30.44b (18) 4.32b (30) 6.77b (35)
B2 + B10 + B16 a 54.13b (48) 58.87b (52) 50.94a (42) 51.94a (52) 6.21a (51) 8.25a (47)
Po37 + B2 + B10 + B16 74.53a (62) 69.80a (60) 35.57b (17) 55.06a (55) 5.21ab (42) 8.78a (50)
S. sclerotiorum-inoculated control 9.60e (0) 9.60f (0) 17.21e (0) 16.69d (55) 1.78d (0) 1.78 g (0)
S. sclerotiorum + Po37 48.47b (80) 49.13d (80) 26.4 cd (35) 26.80bc (38) 2.92c (39) 4.01ef (55)
S. sclerotiorum + B2 + B10 + B16 52.07b (82) 48.47d (80) 26.24 cd (34) 27.62bc (40) 2.36 cd (24) 4.97 cd (64)
S. sclerotiorum + Po37 + B2 + B10 + B16 50.00b (81) 52.13 cd (82) 26.80 cd (36) 30.26b (35) 4.23b (58) 5.51c (68)
S. sclerotiorum +  Fungicideb 19.67d (51) 27.40e (65) 23.85d (28) 23.33c (28) 2.97c (40) 3.41f (48)
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In 2012 (Fig. 4a), bacterial communities differed between 
uninoculated and untreated plants (-) and those on which the 
three rhizobacteria (-_3b) had been applied; while in 2013 
(Fig. 4b), a shift occurred in the genetic structure of the bac-
terial communities of plants treated by the three rhizobacte-
ria (-_3b) and then inoculated with S. sclerotiorum (sc_3b).

Discussion

Plant-pathogen interaction and disease development have 
always been a big challenge (Jeger et al. 2021). With time, 
farmers have applied various strategies to control pathogens’ 
growth. Physical and chemical strategies are important to 
control devastating plant diseases. However, the environ-
mental pollution caused by excessive use of agrochemicals 
and the development of resistance in pathogens to certain 
fungicides led to considerable changes in people’s attitudes 
towards the use of pesticides in agriculture (Egüen et al. 
2016). Biological control strategies are frequently reported 
as being much safer compared to other methodologies from 
the point of view of environmental protection (Singh et 
al. 2020). The best biological control is thought to be that 
one originated from the natural-occurring organisms since 
these organisms are adapted to the environmental condi-
tions (Goussous et al. 2019). Microorganisms under natural 
habitats live in communities and some provide benefits to 
plants. Further, microbes when introduced to the soil as a 
consortium and interact with a host plant, partially mimic 

the natural soil conditions. The current research trend has 
therefore oriented toward investigating the role of microbial 
consortia in promoting plant growth and health against vari-
ous invading pathogens (Sarma et al. 2015).

In our previous studies, we determined that three bacte-
rial strains identified as B. thuringiensis B2 (KU158884), B. 
subtilis B10 (KT921327), and E. cloacae B16 (KT921429), 
whether or not associated with P. oligandrum, have the 
potential to control Rhizoctonia root rot and to promote 
growth for tomato plants (Ouhaibi Ben Abdeljalil et al. 
2021). On this basis, the present work aimed at gaining 
more insight into the effect of the combination of antago-
nists (oomycete and rhizobacteria) to evaluate their ability to 
coexist in the tomato rhizosphere (cv. Rio Grande), to sup-
press white mold disease caused by S. sclerotiorum and to 
promote plant growth during two consecutive years’ assays.

The biological control of S. sclerotiorum has been dem-
onstrated in numerous studies (Sabaté et al. 2018; Macena 
et al. 2020). One of these microorganisms is the oomycete 
P. oligandrum, which is known as a biocontrol agent against 
many plant pathogens (Gerbore et al. 2014; Pisarcik et al. 
2021). Besides, the use of Bacillus strains as biocontrol 
agents to inhibit S. sclerotiorum has been previously tested 
in different crops (Ouhaibi Ben Abdeljalil et al. 2016a, b, c; 
Karthika et al. 2020). To improve the consistency of disease 
control, mixtures of bacteria and fungi as biocontrol agents 
(BCAs) are generally more effective than single BCAs, as 
published in many previous researches (Karthika et al. 2020; 
Ouhaibi Ben Abdeljalil et al. 2021). However, development 
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Fig. 4  Principal Component Analysis (PCA) of the bacterial commu-
nities colonizing the rhizosphere of tomato plants (cv: Rio Grande) 
during two consecutive years, 2012 (a) and 2013 (b), based on SSCP 
profiles. The colors used here represent the profiles depending on the 
rhizobacterial treatment used (_3b: 3 tomato-associated rhizobacteria, 
applied as consortium (red); sc_3b: 3 tomato-associated rhizobac-

teria, applied as consortium against S. sclerotiorum (blue); sc_-: S. 
sclerotiorum inoculated and untreated plants (green); and -_-: unin-
oculated and untreated plants (black)). The variation (%) explained by 
each PCA axis is given in brackets. Ellipsoids draw the center of fac-
tors with 95% confidence
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of new active compounds with low phytotoxicity, reduced 
environmental impact and broad spectrum of activity are still 
required (Cabrefiga and Montesinos 2017).

Ideally, the biocontrol activity of candidate BCAs are evalu-
ated using in vitro and in vivo screenings (Köhl et al. 2020). 
A dual culture technique was used for our two trials and the 
inhibitory activity of the isolated B. thuringiensis B2, B. sub-
tilis B10, and E. cloacae B16 strains was evaluated against S. 
sclerotiorum. The overall results demonstrate that the three 
strains significantly inhibited the pathogen growth in vitro,  
compared to the untreated control, with values ranging from  
41 to 54%. The distorted areas and mycelium anoma-
lous formations of pathogens due to bacterial antago-
nists were frequently reported by many studies (Sabaté  
et al. 2018; Ouhaibi Ben Abdeljalil et al. 2021). Regarding P.  
oligandrum, dual antagonist-pathogen cultures revealed that 
the oomycete significantly inhibited the growth of S. sclero-
tiorum by more than 50% compared to the untreated control. 
The results of the in vivo investigation also showed that after 
contact between P. oligandrum and S. sclerotiorum mycelia, 
hyphae of the pathogen were degraded and cytoplasm became 
empty. P. oligandrum has also the capacity to parasite other 
fungi such as Fusarium oxysporum and Verticillium albo-
atrum, by producing enzymes (cellulases and/or chitinases) 
that degrade the cell walls of target pathogens (Benhamou  
et al. 1999). Numerous studies have shown that P. oligandrum  
also secretes other extracellular enzymes, i.e. lipases, proteases 
and β-1,3-glucanases, which affect pathogenic fungi (Picard  
et al. 2000; Yacoub et al. 2020).

Velandia et al. (2021) suggested that the mechanism of 
in vitro mycelial growth suppression and inhibition success 
is mostly based on the production of antagonistic second-
ary metabolites, mainly the non-ribosomal cyclic lipopep-
tides (CLPs), which can affect phytopathogens directly (e.g. 
iturins and fengycins) or indirectly (e.g. surfactins). In our 
previous experiments, we found that the three bacterial 
strains were able to produce fengycin A and/or bacillomycin 
D (Ouhaibi Ben Abdeljalil et al. 2016a).

In general, primary selection of potential BCAs via  
in vitro dual culture assays has proven to be a valuable strat-
egy to identify, on a higher throughput scale, BCAs with 
further confirmed in vivo biocontrol activity (Wang et al. 
2015; Sharifazizi et al. 2017). The majority of published 
reports on plant disease biocontrol evaluate single strains 
against a specific pathogen (Liu et al. 2018). Despite the 
positive results reported, single BCAs have not been used on  
a wide range of host plants and have typically often exhibited  
inconsistent performances in the field (Pal and Gardener 2006). 
To solve this inconsistency issue, mixtures of BCAs are used  
because this strategy combines multiple modes of action of 
BCAs to control plant diseases more efficiently (Liu et al. 
2018; Alfiky and Weisskopf 2021). We proved the efficacy 

of such microbial mixtures after having tested the associa-
tion of the antagonistic oomycete P. oligandrum with the 
three selected rhizobacteria, B. thuringiensis B2, B. subtilis 
B10, and E. cloacae B16, against R. solani on tomato plants 
(Ouhaibi Ben Abdeljalil et al. 2021).

Many works initiated so far have concentrated on the 
effects of BCAs on the inhibition of fungal mycelial 
growth under in vitro conditions (Ettayebi et al. 2000). 
But very few studies have been conducted under in vivo 
conditions to show the properties of combined antago-
nistic oomycete with the rhizobacterial strains against S. 
sclerotiorum. This is why in the present work we tried to 
confirm the potential of microbial mixtures (P. oligandrum 
and 3 rhizobacteria) in the in vivo biological control of S. 
sclerotiorum during two consecutive years of greenhouse 
assays.

Tomato is an important crop that is grown worldwide and 
is an excellent model for studying plant–microbe interactions 
(Romero et al. 2015). A single organism may fail during 
adverse environmental conditions; therefore, a combination 
of more than one BCA is more likely to resist and help to 
reduce disease incidence through synergistic action. Moreo-
ver, microbial consortia can easily colonize the rhizosphere. 
Kannan and Sureendar (2009) proved the efficiency of con-
sortia treatment in growth promotion and wilt resistance of 
tomatoes (Karthika et al. 2020). This study adds support to 
this strategy because it has provided evidence that tomato 
root treatment with the three-strain consortium, mixed or not 
with P. oligandrum, ameliorated plant growth parameters 
compared to the uninoculated and untreated control. Inter-
estingly, our results showed a significant increase in plant 
growth, roots and aerial part fresh weight when we applied 
microbial mixtures. In the two consecutive years of trials, 
the microbial consortium (Po37 + B2 + B10 + B16) was the 
most efficient in enhancing plant growth by up to 60%, aerial 
part growth by more than 40% and roots fresh weight by 
50%. In summary, the results reported here show that the 
PGPR strains mixture, associated or not with P. oligandrum, 
exhibited both biological control of S. sclerotiorum disease 
and plant-growth promotion. The magnitude of these results 
was better with mixtures than with individual BCAs strains 
and it revealed that combined application of oomycetal and 
bacterial biocontrol agents resulted in a synergistic effect on 
disease suppression. These results are partly supported by 
the studies of many authors (Zhang et al. 2019; Attia et al. 
2020; Ouhaibi Ben Abdeljalil et al. 2021) who showed that 
PGPR and P. oligandrum, applied individually or in com-
binations, as biological agents can stimulate plant growth, 
improve plant health and productivity, and also soil health. 
The authors suggested that the observed increase in plant 
biomass may be due to the production of plant growth pro-
moters and antibiotics. In agreement with this suggestion, 
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the strains tested in our study previously exhibited multiple 
traits related to plant-growth promotion and broad-spectrum 
biocontrol activity (Ouhaibi Ben Abdeljalil et al. 2016a, b, 
c).

Besides, recent research carried by Attia et al. (2020) 
showed that the combined application of B. subtilis, 
Lysinibacillus fusiformis and Achromobacter xylosoxidans 
improved several growth parameters of tomatoes such as 
plant height, shoot biomass, root length, and leaf area. 
According to our results, the treatment with the mixture 
of BCAs was recording the highest percentage of protec-
tion. Indeed, the rhizobacterial consortium tested, applied 
alone or mixed with P. oligandrum, significantly reduced 
the severity of S. sclerotiorum-induced stem rot severity 
compared to the untreated and pathogen-infected tomato 
plants. For combined BCAs (P. oligandrum + 3 rhizobac-
teria), disease suppression ranged from 72 to 93% in 2012 
and from 72 to 89% in 2013 compared to respectively 52 
and 49% using the fungicide control. This result is similar 
to those obtained in previous studies, showing that BCAs are 
generally recognized as important tools for more sustainable 
disease management and represent valuable alternatives to 
classical pesticides (Liu et al. 2018; McDougall et al. 2018). 
Therefore, results of our in planta experiments indicate that 
the three-strain consortium, mixed or not with P. oligan-
drum, could be a promising alternative to the commercial 
fungicide  Previcur®.

Following the plant treatment with BCAs, a change 
may occur within the native microbial community struc-
ture as indicated in the study of Buyer et al. (2010). On 
this basis, to assess the influence of the inoculated strains 
on native rhizospheric microbial communities of tomato cv. 
Rio Grande, Single Strand Conformational Polymorphism 
(SSCP) profiles of amplified 16S rRNA genes, and internal 
transcribed spacers (ITS) were compared. In summary, in 
this study, we focused on the microbial communities colo-
nizing the root systems of tomato plants after a combina-
tion of treatments. We found that native fungal and bacterial 
communities responded differently when microbial BCAs 
were inoculated individually or in a mixture in the rhizos-
phere. Data available in the literature reported that BCAs can 
establish in different soil environments without perturbing 
the bacterial and fungal communities (Edel-Hermann et al. 
2009). Vallance et al. (2009, 2012) and Renault et al. (2012) 
did not report shifts in the native fungal community of the 
rhizosphere after root inoculation by P. oligandrum, while 
they noticed a temporary shift in the native bacterial com-
munity (Vallance et al. 2012). These results may be com-
pared with the investigation observed in the literature (Attia 
et al. 2017; Raymaekers et al. 2020) reporting that the BCAs 
group showed synergistic and antagonistic interactions with 
microbes present in the rhizosphere by indirectly boosting 
plant growth rate through the production of phytohormones.

To conclude, our data suggest that the tested individual 
PGPR strains (B. thuringiensis B2, B. subtilis B10 and E. 
cloacae B16) and their mixtures with or without the antag-
onistic oomycete P. oligandrum, exhibited both biological 
control of Sclerotinia stem rot and plant growth promo-
tion. The magnitude of these results was better with the 
synergistic effect obtained with mixtures of P. oligandrum 
and the three rhizobacteria, than with individual PGPR 
strains. Overall, the present study provides an important 
data resource for further application of combination BCAs 
in tomato protection and production. Future studies should 
evaluate whether PGPR mixtures provide similar enhanced 
biological control and growth promotion in field tests.
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