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26 Abstract

27 Stem end rot (SER) caused by Botrytis cinerea is the primary postharvest disease in the 

28 Chilean kiwifruit industry. Relationships between the postharvest occurrence of SER in 

29 ‘Hayward’  kiwifruit and the temporal dynamics of earlier B. cinerea colonization of the 

30 floral parts (petals, sepals, receptacles, styles) was studied in five orchards over two 

31 consecutive seasons in Chile. Weather conditions in the first season favored B. cinerea 

32 infection with roughly constant colonization of floral parts up to about 120 days after full 

33 bloom but colonization then increased up until harvest. In the second season colonization 

34 was roughly constant throughout. Latent infections of the fruit occurred in both seasons but 

35 were high in the first season and low in the second. Incidence of latent infections at 

36 harvest were the best predictors (r>0.8) of postharvest SER. The number of preharvest 

37 infection periods calculated using temperature, leaf wetness and relative humidity 

38 satisfactorily predicted SER incidence by an exponential model, R2 = 0.90, P<0.001. 

39 Results indicated environmental variables play key roles in the temporal dynamics of B. 

40 cinerea colonization. Quantification of latent B. cinerea infections in asymptomatic fruit 

41 close to harvest, is a practicable way to predict later incidence of SER during storage.

Page 2 of 37



Danae Riquelme-Toledo
Plant Disease

3

42 Chile is one of the world’s largest producers of ‘Hayward’ kiwifruit ((Actinidia deliciosa 

43 (A. Chev.) C.F. Liang et A. R. Ferguson) and the second largest exporter of kiwifruit in the 

44 Southern Hemisphere, with a production area of more than 8,700 ha. 

45 (https://www.odepa.gob.cl/panorama_2019/86/, 2019). The Chilean kiwifruit is produced 

46 primarily for export by ship to distant markets in Europe and Asia 

47 (https://www.prochile.gob.cl/landing/sectores-productivos/, 2019). Hence, it is crucial the 

48 storage life of the fruit is as long as possible. Postharvest technologies to complement cold 

49 storage, such as curing (holding fruit at ambient temperatures prior to cold storage to 

50 promote wound healing), controlled atmosphere storage, modified atmosphere packaging 

51 (MAP) and 1-methylcyclopropene (1-MCP) application, are widely used to reduce kiwifruit 

52 softening and extend storage life (Lallu and Burdon 2007; Park et al. 2015; Pennycook and 

53 Manning 1992; Poole and McLeod 1994). Despite these efforts to maximize fruit quality to 

54 market, postharvest decay remains the primary risk factor affecting Chile’s kiwifruit trade. 

55 Stem end rot (SER) is caused by Botrytis cinerea Pers.; Fr. and Botrytis prunorum EE 

56 Ferrada & Latorre (Elfar et al. 2017). Stem end rot is the postharvest disease of greatest 

57 importance to the kiwifruit industry, and particularly for ‘Hayward’ (Manning et al. 2010; 

58 Park et al. 2015). Losses due to SER are highly variable between seasons and between 

59 orchards indicating both weather effects and also microclimate/management effects 

60 (Pennycook 1985; Michailides and Morgan 1996). Incidence of SER is around 2% to 3% in 

61 New Zealand (Michailides and Morgan 1996; Beever et al. 1984), up to 15% in Chile 

62 (Farías 2009) and up to 20% in Italy (Bisiach et al. 1984).

63 Botrytis cinerea is a polyphagous fungus that has the ability to colonize different tissues 

64 within a host (Latorre et al. 2015; Giraud et al. 1999; Martinez et al. 2005). In kiwifruit, B. 

65 cinerea can colonize flowers, leaves and fruit tissues. These become potential inoculum 

66 sources for SER when environmental conditions are favorable and the fruit is susceptible 
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67 (Elmer and Pyke 1996; Jarvis 1994). The symptoms of SER occur primarily in stored 

68 kiwifruit, while preharvest expression of the disease is uncommon (Pennycook 1985; 

69 Sharrock and Hallett 1992). 

70 Similar to other postharvest diseases (Mari et al. 2003; Fourie et al. 2002; Rivera et al. 

71 2013), B. cinerea infection in kiwifruit occurs in the field, through the colonization of sepals 

72 and receptacles relatively early in fruit development and well before harvest (Michailides 

73 and Elmer 2000; Michailides and Morgan 1996). It can also occur in the small wound in the 

74 stem end caused by picking (Elmer and Michailides 2007; Sharrock and Hallett 1992). 

75 Thus B. cinerea produces latent infections that are later activated when the 

76 physiological and biochemical conditions of the host and the environmental conditions are 

77 optimal for the development of the disease (Michailides et al. 2010; Prusky et al. 2013). 

78 Paraquat and/or freezing temperature treatments have been used to demonstrate the 

79 presence of non-visible pathogens in apple (Biggs 1995), grape (Holz et al. 2003; Sanzani 

80 et al. 2012), peach (Emery et al. 2007), sweet cherry (Adaskaveg et al. 2000), prune (Luo 

81 et al. 2001, Luo and Michailides 2001) and other fruit hosts (Fourie et al. 2002; Northover 

82 and Cerauskas 1994, Prusky et al. 1981). However, few studies have described latent 

83 infections in immature kiwifruit during fruit development or their potential value as 

84 predictors of postharvest SER. 

85 Airborne conidial concentrations (ACC) and environmental conditions are two key 

86 factors that influence the success of the establishment of a latent infection (Elad and 

87 Evensen 1995; Prusky et al. 2013, Verhoeff 1974). Temperature, relative humidity and 

88 wetness duration have been described as the main environmental factors that affect the 

89 infection and dispersion of B. cinerea in table grapes (Broome et al. 1995; English et al. 

90 1989), blueberry (Rivera et al. 2013) and strawberry (Bulger et al. 1987; Xu et al., 2000). 

91 However, the effects of such factors on SER in kiwifruit have not yet been identified.
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92 In Chile, the major strategies to control SER during cold storage involve applications of 

93 chemical products at flowering and/or at harvest (Latorre and Pak, 2003). In addition, 

94 postharvest ‘curing’ is used to induce defense mechanisms within the fruit (Pennycook and 

95 Manning 1992; Poole and McLeod 1994; Wurms et al. 1997). However, these control 

96 strategies were developed based on epidemiological work carried out on B. cinerea under 

97 field conditions in New Zealand and the USA (California). The climatic conditions in Chile 

98 are distinct, so the conclusions from these studies may not apply directly here. Thus, 

99 knowledge is needed of the temporal dynamics of B. cinerea colonization and infection 

100 during fruit development in Chile. This new information should permit more appropriate 

101 recommendations for SER control and more accurate risk assessments to be made under 

102 Chilean growing conditions. Therefore, the objectives of this study were to determine the 

103 temporal dynamics of B. cinerea colonization in the floral parts and in fruit of ‘Hayward’  

104 kiwifruit during development and their relationships with SER occurrence during the fruit’s 

105 subsequent period of cold storage. This study included the somewhat contrasting weather 

106 conditions of two sequential growing seasons.

107

108 Materials and Methods

109 Experimental site

110 The study was conducted during the 2016 (S1) and 2017 (S2) growing seasons, in 

111 Cachapoal Valley (CV) and South of the Maule Valley (SMV). Both are major production 

112 areas for ‘Hayward’ kiwifruit in the Central Valley in Chile. These areas have a 

113 Mediterranean climate (Csb1) according to the Köpper climate classification (Sarricolea et 

114 al. 2017). The historical mean annual temperature range is 14-16°C; the coldest month is 

115 July (mid-winter) 8-9°C and the hottest month is January (mid-summer) 20-22°C. The main 
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116 rainfall period is concentrated between May and August, with the mean annual rainfalls 

117 varying between 446 mm in CV and 773 mm in SMV (www.ine.cl).

118 Five commercial ‘Hayward’ kiwifruit orchards were selected: three (O1, O2 and O3) in 

119 CV and two (O4 and O5) in SMV (Table 1). The vines in all orchards were trained to a 

120 pergola system and irrigated and fertilized following the usual agronomic practices for 

121 commercial kiwifruit production in Chile (www.comitedelkiwi.cl).

122 Sampling 

123 Fruit (or flower) sampling and capture of airborne conidia was done every 20 days. In 

124 S1 sampling started 60 days after full bloom (DAFB), when fruit diameter was 50 mm and 

125 the soluble solid content (SSC) was 4.3 %, and continued until harvest. In S2, sampling 

126 was from full bloom, and by 20 DAFB fruits were 20 mm in diameter and SSC was 4.0%, 

127 and continued through to harvest when the SSC was 5.5-6.2%. At full bloom, a total of 12 

128 flowers per replicate were collected randomly. Later, fruit sampling used 27 fruit per 

129 replicate. Flower and fruit samples were transported to the laboratory in an ice chest and 

130 were stored at 10°C (flowers) or 0°C (fruit) until assessment. At harvest, 80 additional fruits 

131 per replicate were collected and stored at 0°C. Four replicates were used per sampling 

132 day. Sampling was carried out in four rows from 12 to 16 vines. To represent as much of 

133 the plot as possible, sampled vines-rows were spaced between 5 and 10 m apart. The 

134 same vine-rows were used to determine ACC. At full bloom, in S2, the sampling was 

135 carried out before a fungicide application. Due to technical problems, the S1 sampling was 

136 conducted from 60 DAFB instead of full bloom.

137 Botrytis cinerea identification

138 Botrytis cinerea and B. prunorum were identified from a total of 10 Botrytis colonies 

139 obtained from culture of sepals, receptacles, styles, fruit and airborne conidial capture. 

140 Identification was based on the colonial characteristics, colony’s conidial production and 
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141 the morphology of the conidia and conidiophores (Ferrada et al. 2016; Mirzae et al. 2008; 

142 Pei et al. 2019). The culture medium was potato dextrose agar acidified with 0.5 ml liter-1 

143 of 92% v/v lactic acid (APDA) with incubation at 20°C under 12 h light/dark cycle for 10 

144 days. In addition, the morphological identification was corroborated with a molecular study 

145 using BLASTn analysis of the HSP60 gene fragment sequences. 

146 Because B. cinerea was predominantly isolated from ACC, floral part colonization, 

147 latent infection and SER (> 90% of the total of Botrytis isolates in average), the results 

148 obtained were grouped with B. prunorum and then expressed as B. cinerea frequency.    

149 Airborne conidial concentration (ACC)

150 To determine the ACC for B. cinerea, airborne conidia were captured using an 

151 Andersen volumetric spore sampler for agar plates (Burkard Manufacturing. Co. Ltd., 

152 Ricksmanworth, Hertfordshire, UK). This used a 100-hole sieve plate and three agar Petri 

153 dishes (90 mm diameter) per replicate. The spore sampler was operated once per plate for 

154 30 s (20 liter min-1) around midday and was located in two vine-row spaces, 1.8 m above 

155 the ground near the fruit and away from senescent leaves (Michailides and Elmer 2000; 

156 Mundy et al. 2012). The Petri dishes contained APDA plus 0.1% v/v Igepal CO-630 

157 (Sigma-Aldrich, Atlanta, GA) and were incubated for 7 to 10 days at 20-22°C, with a 12 h 

158 day/night light cycle. Colony counts of B. cinerea were expressed as colony forming units 

159 per cubic meter of air (CFU m-3) (Fernández et al. 2011). 

160 Botrytis cinerea colonization in floral parts and latent infection in fruit.

161 To determine the presence of B. cinerea in floral parts of kiwifruit, petals (n=72), sepals 

162 (n=72), styles (n=72) and receptacles (n=12) were removed from 12 flowers or fruits per 

163 replicate and placed in labeled Petri dishes containing APDA plus 0.1 % v/v Igepal CO-

164 630. Before plating, the various floral parts were surface-disinfected (1% w/v sodium 

165 hypochlorite, plus 0.001% v/v Tween 80 for 2 min), washed in sterile distilled water for 1 
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166 min and dried in a laminar flow hood. Plates were incubated for 10 days at 20-22°C under 

167 12 h light. The results are reported as the percentages of floral parts colonized of the total 

168 number of samples.

169 Incidence of latent infections in fruit

170 Latent infections in fruit were determined using the overnight freezing incubation 

171 technique (ONFIT). Apparently healthy fruit (n=15 per replicate) were randomly collected 

172 with peduncle attached on each sampling date and gently hand brushed to remove all 

173 senescent floral debris (necrotic petals, stamens and styles). Fruit were then surface-

174 disinfected as was described for floral parts, washed in sterile water for 1 min, dried for 15 

175 min in a laminar flow and frozen for 24 h at -20°C (Holz et al. 2003; Sanzani et al. 2012). 

176 Subsequently, fruit were incubated in a moist chamber at 20°C. Infection by B. cinerea 

177 was confirmed by noting the presence of soft decay with light brown pulp and the 

178 abundant gray aerial mycelia at the stem end. The kiwifruit infection was assessed after 6 

179 days, and symptomatic fruit were retained for an additional 4 days, awaiting corroboration 

180 by sporulation. Pieces of tissues were immediately taken from under the receptacle from 

181 asymptomatic and symptomatic fruit, plated on APDA for 7 days at 20°C to determine the 

182 presence of B. cinerea. The development of symptoms of SER and the signs of B. cinerea 

183 in apparently healthy fruit after the freezing treatment were considered to be latent 

184 infections.

185 Incidence of stem end rot during storage

186 Stem end rot incidence in kiwifruit was evaluated after 100 days of storage at 0°C plus 

187 two days at 20°C from totals of 320 fruit per orchard. Fruit were hand brushed and their 

188 peduncles removed by hand, cured for 24 h at 20°C and packed in 10 kg capacity 

189 cardboard boxes with 60-µm thick, low-density polyethylene modified atmosphere bags 

190 (MAP, Fresh-Fresh Kiwi, San Jorge Packaging, Santiago, Chile). The fruit were stored in 
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191 an ethylene-free environment produced by passing the incoming air stream through a 

192 potassium permanganate (Bioconservacion, BCN, Spain) ethylene scrubber. The ethylene 

193 concentration was monitored every two days, maintaining ethylene concentrations 

194 consistently at <0.005 µl liter-1 (Zoffoli et al. 2016). Stem end rot incidence was expressed 

195 as the percentage of diseased fruit.

196 Microclimate characterization 

197 Considering that environmental conditions are relevant variables affecting pathogen 

198 infection; temperature, relative humidity, leaf wetness and rainfall were monitored in each 

199 orchard using sensors located in horizontal position, 1.8 m above the ground and below 

200 the kiwifruit canopy. Temperature and relative humidity were recorded using a data logger 

201 (U12 Temp / RH / 2 External Channel Logger, HOBO Onset, Computer Corporation, MA, 

202 USA). Leaf wetness duration (WET) was recorded using a dielectric leaf wetness sensor 

203 (Echo Decagon Devices, WA, USA) and the time duration were expressed in hours. All 

204 devices recorded at 15 min intervals from 60 DAFB in S1 and from full bloom to harvest in 

205 S2. Mean daily temperature (Tm, ±0.35°C) and mean relative humidity (RH, ±2.5%) were 

206 calculated. Vapor pressure deficit (Vpd, kPa) was calculated as (Kaye and Laby 1957):  

207 𝑉𝑝𝑑 = 𝑉𝑝(1 ―
RH
100)

208 Where water vapor pressure (Vp) was: 

209  𝑉𝑝 = 4.6698 𝑒0.06241 Tm

210 Growing degree days (GDD) were calculated from full bloom to harvest using Tm with a 

211 threshold value of 10°C (Salinger and Kenny 1995). Rainfall data (mm), Tm and HR from 

212 full bloom to 60 DAFB in S1 were obtained from weather data recorded by meteorological 

213 stations located in each of the orchards. 

214 Infection periods
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215 The weather data collected were used to calculate the number of infection periods for 

216 B. cinerea that occurred within each 20-days period from full bloom. The infection periods 

217 were determined using the model proposed for B. cinerea infection on table grapes 

218 (Broome et al. 1995). One infection period was recorded if the temperature fluctuated 

219 between 14 and 25°C and if leaf wetness occurred continuously for 6 h or more. An 

220 infection period was not counted if during such a period, the conditions favoring infection 

221 (described above) were interrupted continuously for >4 h.

222 Statistical analyses

223 The dynamic of ACC and colonization of sepals, receptacles, styles and latent infection 

224 in fruit during the growing season (DAFB) were explained with best-fit models using  P ≤ 

225 0.05.

226 Stem end rot differences between orchards were determined by Anova analysis. Mean 

227 differences were separated using the Fisher Least Significant Difference (LSD) test (P ≤ 

228 0.05). Percentage values of SER were transformed to arcsine square root, prior to analysis

229 Pearson´s correlation was used to determine associations between ACC, B. cinerea 

230 colonization in sepals, receptacles, styles, latent infection in fruit and SER incidence with 

231 (P ≤ 0.05).

232 The relationship between the accumulated number of infection-risk periods and SER at 

233 harvest was determined using the best statistical model. 

234 The analyses were carried out using the statistical software SigmaPlot v 12.5 (Systat 

235 Software Inc., San Jose, California, USA). 

236

237 Results

238 Botrytis cinerea identification
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239 Botrytis cinerea (n=5) and B. prunorum (n=5) were identified from isolates cultured in 

240 APDA obtained from airborne conidial capture plates, petals, sepals, receptacles, styles 

241 and fruit. B. cinerea colonies were white to gray and cottony with abundant sporulation on 

242 erect and free conidiophores, branched at the top with ellipsoidal, ovoid to globose non-

243 septated and hyaline conidia of size 9.2 ± 0.8 x 7.1 ± 0.9 µm. Botrytis prunorum colonies 

244 were white, fluffy and cottony with nil to low sporulation in erect conidiophores with 

245 ellipsoidal to ovoid conidia with a slightly protuberant hilum of size 11.8 ± 1.6 x 6.9 ± 0.9 

246 µm. The B. prunorum counts were combined with the B. cinerea ones because of the low 

247 colonization values obtained (< 3%). A BLASTn search analysis using the HSP60 

248 fragment gene sequence of all isolates in the study corroborated the identity of between 99 

249 to 100% of B. cinerea and B. prunorum. 

250 Microclimate conditions

251 In both seasons, CV and SMV experienced a typical Mediterranean summer (Table 2). 

252 The GDD from full bloom to harvest varied from 1,324 to 1,379 GDD in S1 and from 1,189 

253 to 1,373 GDD in S2. The average daily maximum temperature was recorded between 

254 December and February (60-100 DAFB) averaging 19.8±0.9°C in S1 and 20.1±1.3°C in 

255 S2. 

256 Rainfall was greater in S1 than in S2. The total accumulated rainfall in S1 recorded 125 

257 mm in CV and 83 mm in SMV. In the last period before harvest, the rainfall recorded 104.7 

258 mm in CV and 60.2 mm in SMV. In contrast, no important rainfall events occurred in CV 

259 (2.9 mm) or SMV (41.0 mm) during S2. 

260 The average of accumulated WET duration in CV was 865 h (S1) and 662 h (S2), while 

261 the equivalent values for SMV were 788 h (S1) and 371 h (S2) (Table 2).

262 Airborne conidial concentration
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263 The concentrations of airborne B. cinerea conidia averaged 674 CFU m-3 (from 60 

264 DAFB to harvest) in S1 and 177 CFU m-3 (from 0 DAFB to harvest) in S2 (Fig. 1). 

265 In S1, ACC temporal dynamics were similar between CV and SMV, these are both 

266 satisfactorily fitted by quadratic regressions (P < 0.001). The concentrations were always 

267 higher in CV than in SMV, the averages were 685 CFU m-3 in CV and 288 CFU m-3 in 

268 MSV. The highest concentrations were obtained at the end of the season with maxima of 

269 2,293 CFU m-3 in CV and 770 CFU m-3 in MSV (Fig. 1A). In S2, mean ACC values were 

270 3.8-fold lower than those in S1 and were similar between CV and MSV throughout the 

271 season. The highest values of ACC in S2 occurred on 80 DAFB in CV (352 CFU m-3) and 

272 on 60 DAFB in MSV (379 CFU m-3) while the lowest values were at harvest in CV (27 CFU 

273 m-3) and at 120 DAFB in MSV (41 CFU m-3) (Fig. 1B).

274 Botrytis cinerea in floral parts and latent infections in fruit

275 Botrytis cinerea was consistently isolated from asymptomatic petals, sepals, 

276 receptacles and styles (Fig. 2). The temporal dynamics differed significantly between 

277 seasons (S1 and S2) and locations (CV and SMV).

278 Across all floral parts, the levels of B. cinerea found in the CV orchards were similar or 

279 higher than those in the SMV orchards. This was true across both seasons. Levels were 

280 either constant or increased towards harvest in S1. However, no clear temporal pattern 

281 emerged during S2. In S1 and S2, respectively, the mean frequencies of isolation were: 

282 15.1 and 21.4% in the sepals, 24.0 and 26.1% in the receptacles and 14.8 and 6.4% in the 

283 styles. In S2, the average colonization of petals by B. cinerea was 70.9%. 

284 In S1, the temporal dynamics of B. cinerea in sepals, receptacles and styles were 

285 significantly explained by quadratic regressions, with the exception of the sepals in SMV, 

286 where little variation occurred with time. In the sepals, the frequency of isolation averaged 

287 18.8% with a slight increase at harvest (Fig. 2C). In the receptacles, the frequency of B. 
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288 cinerea averaged 25.6% in CV and 22.4% in SMV (Fig. 2E). The highest levels of B. 

289 cinerea in the styles was at harvest when the levels averaged 17.0% in CV and 13.2% in 

290 MSV (Fig. 2G).

291 In S2, the temporal dynamics of B. cinerea either decreased or was constant with time. 

292 The isolation frequency in the sepals decreased linearly from bloom (45.9%) to harvest 

293 (14.6%) in CV (R2 = 0.32, P < 0.001) (Fig. 2D). The isolation frequency through the season 

294 remained constant in SMV, averaging 12.7%. In the receptacles, no significant relationship 

295 was found between B. cinerea isolation frequency and time in CV (Fig. 2F). Meanwhile, in 

296 MSV, the isolation frequency increased between 80 and 120 DAFB and then decreased to 

297 harvest. In the styles, the B. cinerea isolation frequency remained low and constant in both 

298 CV and MSV (Fig. 2.H).

299 Incidence of latent infection in fruit

300 During S1, fruit with latent B. cinerea infections developed abundant aerial mycelia and 

301 light brown pulp in the stem end at each sampling day. The averages across sampling 

302 days were 49.8% in S1 and 2.7% in S2. 

303 In general, similar latent infections occurred with time in CV in S1, values ranging from 

304 40 to 60% until harvest. Meanwhile, in SMV, the latent infection rate decreased from 65% 

305 and to 40% (Fig. 3A). In S2, the latent infection rates were low (<10%), remained constant 

306 with time and were not significantly explained by a linear regression (Fig. 3B).

307 Stem end rot incidence in storage

308 Stem end rot developed in fruit stored at 0°C for 100 days with significantly different 

309 incidences between seasons and orchards. Mean incidence varied between seasons, 

310 being 31.5% in S1 and 6.6% in S2 (P < 0.001). In S1, the SER incidence varied between a 

311 low of 1.9% in O4 and a high of 60.3% in O3. In S2, the mean incidence was 2.8-fold lower 

312 than in S1 and did not differ significantly between orchards (P = 0.14) (Fig. 4). 
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313 Infection periods

314 Environmental conditions favoring B. cinerea infection were recorded from full bloom to 

315 harvest in S1. The number of infection periods ranged from a maximum of 18 in O3 to a 

316 minimum of 11 in O4 which were concentrated at 80 DAFB and at harvest (Figure 5A). At 

317 least one period of infection occurred during each time interval except for from 0 to 40 

318 DAFB in which none were recorded. The second season was drier and less conducive to 

319 infection. There were four infection periods in O1, O4 and O5 and none in O2 and O3 

320 (Figure 5B). A positive relationship between the cumulated number of infection periods 

321 from full bloom to harvest and SER in cold storage was observed (r = 0.95). This 

322 relationship is best represented by the exponential model (y=exp (0.23 x), R2 = 0.90, P < 

323 0.001) where x = the cumulative number of infection periods and y = the incidence of SER 

324 (%) (Fig. 6). To illustrate this positive relationship by two examples, when the number of 

325 infection periods exceeded 15, the percentage of infected fruit was approximately 30%, 

326 while with when there were 17 infection periods, the percentage of infected fruit exceeded 

327 50%. 

328 Relationships between colonization in floral parts and latent infections in fruit with 

329 stem end rot incidence during storage

330 Pearson´s coefficients (r) were used to describe the relationships between B. cinerea 

331 colonization in floral parts or as latent infections in fruits observed from full bloom or from 

332 60 DAFB to harvest and the subsequent SER incidence during storage in both seasons. In 

333 S1, the relationships were positive and significant with the highest values between 140 

334 DAFB and harvest (Fig. 7A). In S2, significant relationships were found between 

335 colonization and SER in the sepals (r = 0.47) and the styles (r = 0.47) at full bloom and the 

336 styles at harvest (r = 0.56) (Fig. 7B). To obtain a more robust result, given the two 

337 contrasting seasons, the S1 and S2 data were combined and used to determine the 
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338 relationship between SER and the presence of B. cinerea in each tissue and at each 

339 sampling date. The significance of Pearson´s coefficients for all variables increased from 

340 full bloom to the end of the season, with the highest values at harvest (Fig. 7C). All 

341 variables at harvest were significantly related to the postharvest incidence of SER. The 

342 style colonization was positively and significantly related to SER from 120 DAFB until 

343 harvest (r = 0.75) (Fig. 7C).  Receptacle colonization was significantly related to SER only 

344 at harvest while sepal colonization was significantly relater to SER only at full bloom (only 

345 measured in S2) and at harvest (both seasons). The most significant (r = 0.8) and 

346 consistent relation was between latent B. cinerea infections of the fruit through the season 

347 and SER. 

348

349 Discussion

350 The temporal dynamics of B. cinerea colonization associated with floral parts and fruit 

351 was studied during fruit development, in five ‘Hayward’ kiwifruit orchards in two regions 

352 and over two growing seasons (2016, 2017). Using this information, we were able to 

353 identify the best ‘indicator’ tissue, e.i. latent infections of fruit, to predict the later incidence 

354 of SER during cold storage. Botrytis cinerea colonized all floral parts and the key sources 

355 of inoculum associated with SER were the style from 120 DAFB until harvest, the 

356 receptacle at harvest and the sepals at full bloom and harvest. Otherwise, environmental 

357 conditions affected the temporal dynamics, inoculum density of B. cinerea in the orchard 

358 and the most important factors appear to be episodes of rainfall and surface wetness. Our 

359 study indicates that the presence of B. cinerea in all floral parts and latent infections of fruit 

360 were related with SER under wet season (S1). When data from wet (S1) and dry 

361 (S2)seasons were pulled and analyzed, incidence of latent infection was positively and 

362 significantly related to SER incidence from 60 DAFB to harvest.
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363 Notwithstanding the application of a botryticide at full bloom in both seasons, the 

364 colonization of B. cinerea was demonstrated in all floral parts evaluated. This result 

365 indicates B. cinerea is a component of the mycoflora of flowers and fruit and that it is able 

366 to survive through the season within these inoculum sources. In this study, the temporal 

367 dynamics of B. cinerea in S1 was similar to the results obtained by Michailides and 

368 Morgan (1996) in California, with the highest values of Botrytis colonization at the end of 

369 the season. The high wetness duration due recurrent rainfall events along with warm 

370 temperature (14°C to 25°C) before harvest would seem to explain, in this study, the high 

371 values of colonization at the end of S1. In grapes, Hill et al. (2019) showed that RH and 

372 surface wetness duration were key environmental determinants of botrytis epidemics and 

373 similar results were obtained in blueberry (Rivera et al. 2013)

374 Weather conditions and cultural practices (Snelgar et al. 1998) both influence fruit 

375 microclimate and so directly affect the colonization of B. cinerea (Latorre et al. 2015; Elmer 

376 and Pyke 1997; English et al. 1989; Valdés-Gómez et al. 2008). Favorable environmental 

377 conditions as temperatures between 15°C and 20°C along with relative humidity > 65.5% 

378 then lead to sporulation and, in presence of free moisture, the subsequent infection of the 

379 fruit (Ciliberti et al. 2016). English et al. (1989) determined that temperature, vapor 

380 pressure, wind speed and leaf wetness under the canopy of grapevines are critical 

381 variables that affect Botrytis infection in grape.  For example, in our study Orchards 4 and 

382 5 in SMV had more transparent canopy and reached the lowest cumulated infection 

383 periods at harvest and thus, lead the lowest colonization by B. cinerea in sepals and styles 

384 in both years and the lowest SER incidence in S1, reaffirming the prime importance of 

385 environmental conditions to B. cinerea infection. Therefore, strategies with a holistic 

386 approach are suggested to reduce the infection during the season in kiwifruit orchards.
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387 The analysis of leaf wetness duration in the CV and SMV orchards, integrated with Tm 

388 in an algorithm, allowed to quantify conditions that favoring B. cinerea infection in both S1 

389 and S2. 

390 Models using microclimatic factors to predict Botrytis infections in a range of hosts have 

391 been developed both under controlled conditions (Broome et al. 1995; Bulger et al. 1987) 

392 or under field conditions (Calvo-Garrido et al. 2014; Carisse et al. 2017). Similar to Rivera 

393 et al. (2013) with blueberries, we found an exponential model best explained the relation 

394 between the number of infection periods (14°C<T<25°C, >90% RH along with at least 6 h 

395 of wetness duration) and the incidence of postharvest decay. Our results show that with 

396 zero infection periods in S2 a few infected kiwifruits were nevertheless found during 

397 storage. This suggests environmental factors other than the ones we considered could be 

398 involved (Blanco et al. 2006; English et al. 1989). The inclusion of ACC has been found to 

399 improve models based on microclimatic factors that predict Botrytis-caused diseases 

400 (Blanco et al.2006; Carisse et al. 2017; Xu et al. 2000). Also, Carisse and McNealis (2018) 

401 reported a significant correlation between ACC and losses produced by Botrytis fruit rot in 

402 strawberry. In our results, the ACC differed between seasons, with higher mean values in 

403 S1 and lower ones in S2 which also fits with the levels of infection  in the two seasons. The 

404 ACC changes daily depending on host tissue (Jaspers et al. 2016; Ciliberti et al. 2016) and 

405 environmental conditions favorable to sporulation and conidial release (Blanco et al. 2006; 

406 Sosa-Alvarez et al. 1995). 

407 After ONFIT, previously asymptomatic kiwifruit developed abundant aerial mycelia and 

408 light brown pulp in the stem end, demonstrating that B. cinerea infections occur during fruit 

409 development. These latent infections were shown to be strongly associated with the 

410 development of SER during storage (r = 0.8). Overall the incidence of latent infections was 

411 high in S1 (49.8%) and low in S2 (2.7%). These data demonstrate that B. cinerea 
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412 infections occur during fruit development. Latent infections of fruit by Botrytis spp. have 

413 been described in grapes (Holz et al.2003; Sanzani et al. 2012) with full bloom being one 

414 of the periods when infection is most likely to occur (Keller et al. 2003; Nair et al. 1995). 

415 The results suggest that fruit susceptibility to B. cinerea was high before 60 DAFB which 

416 agrees with the results of Riquelme et al. (2017), who reported that kiwifruit at 20 DAFB 

417 was susceptible to controlled inoculation of Botrytis spp. They also claim that immature 

418 fruit are more susceptible to Botrytis infection than mature ones, a result also observed by 

419 Wurms et al. (1998). However, this result does not clarify the relationship of the infection in 

420 flowering and the early stages of fruit with the appearance of SER during storage as has 

421 been explained in some other fruit species, such as table grapes at flowering (Keller et al. 

422 2003; Nair and Allen 1993). 

423 Since the need to predict SER is important, so that control measures can be 

424 implemented under high risk, correlation analysis using different tissues have been 

425 proposed. Among these, the percentage of floral parts colonized by B. cinerea (Michailides 

426 and Morgan 1996; Elmer and Pyke 1997) and the inoculum density in leaf tissues 

427 (Manning et al. 2010) have proved good SER predictors in kiwifruit. Michailides et al. 

428 (2010) described latent infections in fruit as useful ‘indicators’ of a number of factors that 

429 might affect disease development in the orchard. These will include environmental 

430 conditions (Mari et al. 2003; Michailides and Morgan 1996) as well as cultural practices.

431 According to the relationship between the floral parts analyzed and SER incidence, 

432 style colonization showed the most positive, and significant correlations with SER during 

433 the whole of S1, and also at full bloom and at harvest in S2. Nevertheless, this does not 

434 necessarily mean that style colonization is the most important inoculum source causing 

435 SER. On the contrary, the styles were less frequently colonized compared with the sepals 

436 and receptacles. This finding is supported by the previous work which indicates stylar rot in 
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437 kiwifruit is unusual (Bisiach et al. 1984) and is not associated with postharvest SER 

438 (Fermaud and Gaunt 1995). Therefore, these results reaffirm that colonization of floral 

439 parts may more closely reflect the environmental conditions of the season (Michailides et 

440 al. 2010).

441 It is important to realize that a kiwifruit is the results of the pollination of numerous styles 

442 (about 35) and reflects the fecundity of perhaps 1000 ovules. Lastly, it is worth noting that 

443 petals fall just a few days after flowering, whereas the sepals and styles are retained by 

444 the fruit through to harvest offering a substrate for B. cinerea throughout this roughly five-

445 month period from bloom to harvest. Hence these sources, rather than the very temporary 

446 petals, are more likely to infect the fruit. Symptoms of Botrytis infection during storage 

447 appear at the stem end, suggesting that it is the sepal and receptacle tissues that are 

448 contact with the fruit. Of course, due to variable environmental conditions and the fruit’s 

449 own disease defense mechanisms, not all these infected tissues will result in SER 

450 (Sharrock and Hallett 1992). Sepals and receptacle were significantly correlated with SER 

451 in this study during S1 similar to the results of a Californian study (Michailides and Morgan, 

452 1996). Also SER infections rarely occur in some Chinese Actinidia cultivars (yellow-

453 fleshed) such as ‘Hort16A’ or ‘Jintao’ where sepals hardly remain on the fruit (Manning et 

454 al. 2003). 

455 In Chile, recording incidence of latent infections in kiwifruit can be indicative of years in 

456 which high incidence of SER (S1) will occur, or of low ones (S2). This advance warning of 

457 likely high or low SER is at least two months after full bloom and some three months 

458 before harvest. This is similar to the timing of analysis of methods recommended using 

459 level of colonization of B. cinerea in sepals and receptacles as predictors of SER 

460 (Michailides and Morgan 1996). Nevertheless, it is likely that not all infections on floral 

461 parts will result in latent infections of the fruit and then in a subsequent rot (Sanzani et al. 
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462 2012). In addition, the presence of latent infection by B. cinerea in grape berries using a 

463 quantitative real-time PCR (qPCR) detection method was demonstrated and with an 

464 efficiency higher than obtained from freezing technique (Sanzani et al. 2012) even at low 

465 inoculum pressure. However, values obtained from qPCR technique was highly correlated 

466 with freezing technique (Sanzani et al. 2012), indicating that both methods were similarly 

467 reliable. However, qPCR is an expensive method which requires skilled expertise, specific 

468 facilities to be applied.

469 In summary, B. cinerea colonization of the floral parts remaining on the fruit was 

470 present during the whole season and was able to harbor latent infections in fruit early in 

471 the season. Microclimatic conditions played a significant role in the SER epidemiology, 

472 affecting the temporal dynamics of colonization and inoculum density by B. cinerea and 

473 determined the occurrence of conducive season to infection or unfavorable season as S1 

474 instead of S2. Furthermore, latent infections detected by ONFIT from 60 DAFB in kiwifruit 

475 might be a valuable, practical and straightforward tool for the early and accurate prediction 

476 of postharvest SER and might be useful to producers, to identify plots or orchards with a 

477 potential high SER incidence and, timely to apply control managements and take properly 

478 decisions about the storage duration or proximity of destination markets. Nevertheless, we 

479 suggest further evaluation of this method is undertaken using fruit from multiple orchards, 

480 to more precisely determine the critical values needed to estimate the risk of significant 

481 losses due to SER during subsequent storage.

482
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677 Table 1. Characteristics of the ‘Hayward’ kiwifruit orchards used in the study

Cachapoal Valley  South of Maule Valley
Characteristics

Orchard 1 Orchard 2 Orchard 3 Orchard 4 Orchard 5
Planting year 1994 2006 2006 2004 2004

Location 34°00'S, 70°42'W 34°20´S, 70°42´W 34°22´S, 70°54´W 35°48'S, 71°48'W 35°48'S, 71°49'W
Plot (hectare) 6.4 1.8 4.7 3.5 6.0

Row length (m)w 193.4 (0.6) 100 (3.4) 123.8 (44.6) 112.2 (140.6) 328.5 (11.6)
Vine Spacing  (m x m) 5.0 x 3.5 3.5 x 3.0 4.7 x 2.5 3.5 x 3.0 3.5 x 3.0

Light interception (%) v,w 94.7 (2.7) 88.6 (8.1) 91.5 (1.8) 77.0 (12.7) 88.6 (2.3)
Irrigation system micro-sprinklery drip irrigation drip irrigation micro-sprinklerx micro-sprinklerx

Fungicide programz Iprodione Iprodione Fenhexamid  Iprodione Iprodione 
678

679 v Light interception based on the point grid method (Wünsche et al. 1995). Percentage of shadow projected under the canopy on a 

680 grid of 19 to 35 frame of 1 x 0.5 m. Each frame was photographed and the percentage of shaded area was calculated over the total 

681 area using the IMAGE J 1.49v software (Rasband, National Institute of Health, USA) (Zarate-Valdez et al. 2015). Values shown from 

682 S2 at harvest. 

683 w Values in parenthesis corresponded to standard deviation.

684 x The micro-sprinklers were 30 cm above the ground

685 y The micro-sprinklers were 100 cm above the ground. 

686 z Iprodione (Rovral 4Flow, Bayer; 2.5 liter ha-1) or fenhexamid (Teldor, Bayer; 1.2 liter ha-1) were applied at full bloom and one week 

687 before harvest in both growing seasons at rates recommended to control gray mold control.  
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688 Table 2. The microclimate of ‘Hayward’ kiwifruit orchards in Cachapoal Valley and 

689 South of Maule Valley from full bloom to harvest in S1 (2016), and S2 (2017)

GDD (°C) v  Tm (°C)w  RH (%)x  Vpd (kPa)y  WET (h)z

Valley
S1 S2  S1 S2  S1 S2  S1 S2  S1 S2

Cachapoal Valley (CV)

O1 1,324 1,373 18.2 18.3 74.7 75.3 3.9 3.7 1,130.9 499.6
O2 1,354 1,189 18.3 18.7 71.1 73.4 4.5 4.0 680.8 1190.0
O3 1,379 1,360 18.2 18.9 71.6 70.4 4.4 4.6 784.6 177.7

Mean 1,353 1,307 18.2 18.6 72.5 73.0 4.3 4.1 865.42 622.44

South of Maule Valley (SMV)

O4 1,359 1,373 17.7 20.1 73.6 67.0 3.9 5.4 790.5 245.8
O5 1,311 1,359 17.8 19.6 73.5 68.1 3.9 5.1 785.5 496.3

Mean 1,335 1,366  17.7 19.8  73.6 67.6  3.9 5.2  788.0 371.1
690 v Growing degree day accumulation base 10°C from full bloom to harvest. 

691 w Mean daily temperature (Tm).

692 x Mean daily relative humidity (HR)

693 y Vapor pressure deficit (Vpd) 

694 z Accumulated leaf wetness duration (WET) from full bloom to harvest.
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Fig. 1. Mean airborne conidial concentration (ACC) of Botrytis cinerea of five  'Hayward' kiwifruit orchards 
located in Cachapoal Valley (CV: Orchards 1, 2 and 3) and South of Maule Valley (SMV: Orchards 4 and 5) 

from full bloom (FB) to harvest (H). A. Season 2016 (S1). B. Season 2017 (S2). Mean values were obtained 
from the average of 4 replicates of 3 measures each. Vertical bar = standard error. Regressions were 

significant when P ≤ 0.05. 
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Fig. 2. Cumulated rainfall (A, B) and temporal dynamic of Botrytis cinerea affecting sepals (C, D), 
receptacles (E, F), and styles (G, H) of  'Hayward' kiwifruit from full bloom (FB) to harvest (H) in five 

orchards located in Cachapoal Valley (CV) and South of Maule Valley (SMV) in 2016 season (A, C, E, G) and 
2017 season (B, D, F, H). Vertical bar = standard error. Regressions were significant when P ≤ 0.05. 
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Fig. 3. Temporal dynamic of Botrytis cinerea latent infection in 'Hayward' kiwifruit from 20 DAFB to harvest 
(H) of three orchards in Cachapoal Valley (CV) and two in South of Maule Valley (SMV). A. 2016 season. B. 
2017 season. Latent infection was determined after 6-10 days of incubation at 20°C in a wet chamber prior 
to overnight freezing incubation technique (n = 15, 4 replicates). Vertical bar = standard error. Regressions 

were significant when P ≤ 0.05. 
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Fig. 4. Stem end rot incidence (%) after 100 days at 0°C plus 2 days at 20°C in five 'Hayward' kiwifruit 
orchards located in Cachapoal Valley (Orchards 1, 2 and 3) and South of Maule Valley (Orchards 4 and 5). 

A. 2016 growing season. B.  2017 growing season. Vertical bars = the standard error of four replicates of 80 
fruit each. Means followed by the same letter indicate significant differences according to Fisher LSD test (P 

≤ 0.05). 
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Fig. 5. Infection periods counted between full bloom to harvest in five orchards located in Cachapoal Valley 
(Orchards 1, 2 and 3) and South of Maule Valley (Orchards 4 and 5). A. 2016 season (S1). B. 2017 season 
(S2). One infection period was estimated if 14°C < T < 25°C, RH > 90% or leaf wetness for at least 6 hours 

(Broome et al. 1995). T: mean temperature; RH: Relative humidity. 
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Fig. 6. Exponential relationship between the cumulated number of infection periods based on the algorithm 
of Botrytis cinerea model (Broome et al. 1995) from full bloom until harvest and stem end rot incidence 

after 100 days at 0°C plus 2 days at 20°C. Stem end rot incidence was estimated from five kiwifruit 
orchards in 4 replicates of 80 fruit each season. Mean values from 2016 season (S1) in Cachapoal Valley 
(CV, solid circle) and South of Maule Valley (SMV, solid triangle) and from 2017 season (S2) in Cachapoal 

Valley (CV, empty circle) and South of Maule Valley (SMV, empty triangle) are shown. Vertical bars = 
Standard error. 
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Fig. 7. Pearson’s coefficients obtained from the correlations between postharvest stem end rot incidence 
and the presence of Botrytis cinerea in sepals, styles, receptacles and latent infection in fruit, from full 
bloom (FB) to harvest (H). A. Season 2016 (S1). B. Season 2017 (S2). C. Pearson’s coefficients were 

calculated using data from S1 and S2 at each sampling day. Values above dashed line indicate significant 
correlations (P ≤ 0.05).   
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