
Spatial Statistics 31 (2019) 100361

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

A new centered spatio-temporal autologistic
regressionmodel with an application to local
spread of plant diseases
Anne Gégout-Petit a,∗, Lucia Guérin-Dubrana b,c, Shuxian Li b
a Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
b Université de Bordeaux, ISVV UMR-1065 INRA, France
c Bordeaux Sciences Agro, Gradignan, France

a r t i c l e i n f o

Article history:
Received 14 November 2018
Received in revised form 14 May 2019
Accepted 15 May 2019
Available online 22 May 2019

Keywords:
Spatial–temporal modelling
Large-scale model structure
Binary response
Maximum pseudo-likelihood estimation
Autologistic model

a b s t r a c t

We propose a new spatio-temporal autologistic centered model
for binary data on a lattice. Centering allows the self-regression
coefficients to be interpreted by separating the large-scale struc-
ture from the small-scale structure. One of the coefficients de-
termines the overall level (or average) of the process, the second
determines the spatial autocorrelation. We discuss the existence
of the joint distribution of the process and carry out numerical
studies to highlight the interest of this type of centering. We sug-
gest using the estimator that maximises the Pseudo Likelihood
(denoted Maximum Pseudo Likelihood Estimator (MPLE) in the
following) and we give a method for choosing the neighbour-
hood structure. We run simulations studies that show that the
estimation method and model selection method work well. The
method is applied to model and fit epidemiological data on Esca
disease in a vineyard in the Bordeaux region.

© 2019 Published by Elsevier B.V.

1. Introduction

Since spatial and spatio-temporal data are commonly present in nature, the modelling of such
data has increased the interest of many scientists from various fields such as ecology, epidemiology
and image analysis. Binary data is of particular interest for modelling the occurrence of an event
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such as disease or death. Spatio-temporal and spatial binary data models are quite adequate to study
the evolution of a known plant disease on a grid if propagation and interaction between neighbours
is suspected.

40 years ago, Besag (1974) firstly presented an autologistic model for spatial binary data,
assuming a simple dependence on surrounding neighbours. This model has been shown to be useful
and then was extended by Gumpertz et al. (1997) and Huffer and Wu (1998) to take into account
the effects of some covariates.

More recently, Zhu et al. (2008) and Zheng and Zhu (2008) generalised autologistic regression
models to simultaneously account for covariates, spatial covariates, and time dependence for binary
data that are measured repeatedly over time on a grid.

However it is difficult to interpret the parameters in a non-centered autologistic regression
model. This problem has been first pointed out by Caragea and Kaiser (2009) who presented a
centered parameterisation for an autologistic spatial regression model to overcome interpretation
problems. Following this work, Hughes et al. (2011) discussed in more detail the estimation
of parameters and random field simulations from an centered autologistic model on a lattice.
Then, Wang and Zheng (2013) presented a centered spatio-temporal autologistic regression model.
They used and compared several methods for estimating model parameters and coefficients. The
drawback of this spatio-temporal model is that the temporal dependency is not causal and the
state of a point at time t is linked with its state at time t − 1 and t + 1. This model has good
mathematical properties but is not useful for interpretation by the practitioner. A review of the
literature on autologistic models applied to binary data was recently given by Zhu and Zheng (2016).

In this paper, we present a new centered spatio-temporal autologistic model which depends only
on the past. We will show, on simulated data, the advantage of this kind of centering over other
autologistic models; indeed, we will see that, unlike the other models, it gives the expected average
of the process. Since the joint distribution of such models is very complex to write, we recommend
an estimation method based on the Maximisation of the Pseudo-Likelihood (MPL). We present a
method for choosing the neighbourhood structure by using the value of the Pseudo-Likelihood. We
apply the model for a better understanding of the spread of esca grapevine disease in a vineyard.
We used leaf symptom data recorded in a vineyard in the Bordeaux region from 2004 to 2017.

The paper is organised as follows: in this section we first give the formalism to define ran-
dom field, neighbours structure and autologistic models and we review the literature on spatial
and spatio-temporal autologistic models. In Section 2 we present our new centered autologistic
model and discuss the existence of the joint distribution of the spatio-temporal process. Then,
in Section 3, we present several simulations results to compare the spatio-temporal autologistic
model depending on the past under different centered parametrisations. In Section 4, we present
an inference algorithm to calculate the Maximum Pseudo-Likelihood Estimator of our model. We
evaluate it by calculating parameter estimates on simulated data. We also present a method for
choosing between possible neighbourhood structures. We study its performance by comparing the
selected neighbourhood structures on simulated data with the actual structure. Section 5 presents
an analysis of real data on the spread of a disease in a vineyard. In Section 6, we discuss the interest
of the methodology and give some perspectives on this study.

1.1. Spatial autologistic models

Let [Z] denote the distribution of random variable Z . Let Z = {Zi : i = 1, . . . , n} be the random
field where Zi ∈ {0, 1} represents the state at the ith point si of a lattice S = {s1, . . . , sn}. The
distribution [Z] is given by the conditional laws

[Zi|Zj, j ̸= i] ∼ Binary(pi),

where for 1 ≤ i ≤ n, pi = P(Zi = 1|Zj, j ̸= i).
In addition, we have a neighbourhood structure: we assume that each position si is associated

with a set Ni containing the neighbours of si. We suppose that this relation is symmetric that is
sj ∈ Ni ⇔ si ∈ Nj. This neighbourhood structure defines a non-oriented graph whose nodes are the
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locations si’s and there is an edge between si and sj if sj ∈ Ni. From now on, we will use an notation
abuse and confuse i and si in the formulae by using ‘‘j ∈ Ni’’ instead of ‘‘j such that sj ∈ Ni’’.

If moreover we assume that the conditional distributions of the random field Z satisfy the
following Markov property:

[Zi|Zj, j ̸= i] = [Zi|Zj, j ∈ Ni] for all 1 ≤ i ≤ n, (1)

then Z is said to be a Markov random field associated with the neighbour structure given by the
Ni’s. The conditional binary probability can be expressed in exponential family form:

P(Zi|Zj, j ∈ Ni) =
exp

(
ZiAi(Zj, j ∈ Ni)

)
1 + exp

(
Ai(Zj, j ∈ Ni)

) (2)

where Ai is called a natural parameter function. When the Zi’s take values in {0, 1} and that will be
the case in this paper, the use of the logit function instead of the Ai to model the pi is very common;
it is defined by the following equation:

Ai(Zj, j ∈ Ni) = logit(pi) = log
(

pi
1 − pi

)
= log

(
P(Zi = 1|Zj, j ∈ Ni)
P(Zi = 0|Zj, j ∈ Ni)

)
.

Besag (1974) showed that the natural parameter functions must be of form:

Ai(Zj, j ∈ Ni) = logit(pi) = αi +
∑
j∈Ni

ρijZj, (3)

with αi a leading constant. Note that the regression coefficients ρij may depend on site si and its
spatial neighbour sj. The variables Zi’s are independent from each other if for each 1 ≤ i ≤ n,
P(Zi = 1|Zj, j ̸= i) does not depend on the Zj. From Eqs. (2) and (3), we can easily see that it is
equivalent to ρij = 0 ∀(i, j) ∈ S × S with S = {1, . . . , n}. It means that the parameters ρij’s reflect
the dependences within the lattice. An obvious question is the existence of the joint distribution
of the spatial process {Zi : i = 1, . . . , n} that is only defined through the conditional probabilities
[Zi|Zj, j ∈ Ni]. Coefficients ρij must satisfy certain restrictions for a joint distribution of the Zi’s to
exist (Gaetan and Guyon, 2008); in particular, Besag (1974) showed that the symmetry condition
ρij = ρji is necessary for the joint distribution to exist.

The modelling can be generalised to include covariates X = {Xi, i = 1, . . . , n}. In this case, the
natural parameter function is given in Caragea and Kaiser (2009) by:

logit(pi) = XT
i β +

∑
j∈Ni

ρijZj, (4)

with β a k-vector of regression parameters. Caragea and Kaiser (2009) discussed the difficulties
in interpreting model parameters for a non-centered autologistic model given by Eq. (4). Indeed,
let pi = P(Zi = 1|Zj, j ∈ Ni,Xi) so that the odds that Zi = 1 in model (4) is pi/(1 − pi). Let

ci =
exp(XT

i β)

1+exp(XT
i β)

being the probability of occurrence under the spatial independence model (when
all the ρij’s equal 0), the odds that Zi = 1 is ci/(1− ci). Then the log odds ratio for model (4) relative
to the independence model is:

log
(
pi/(1 − pi)
ci/(1 − ci)

)
=

∑
j∈Ni

ρijZj

In this case, the odds of Zi = 1 in model (4) relative to the independence model increases for any
nonzero neighbours, and can never decrease. This is not reasonable if most of neighbours are zeros
and could bias the realisations towards 1.

To overcome these difficulties of interpretation, a centered spatial autologistic model was
introduced by Caragea and Kaiser (2009). In this model, the value of the Zj’s in the regression is
centered by their expected ‘‘large-scale’’ value and the pi’s are given by:

logit(pi) = XT
i β +

∑
j∈Ni

ρij

(
Zj −

exp(XT
j β)

1 + exp(XT
j β)

)
. (5)
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The authors of Caragea and Kaiser (2009) pointed out that model (5) is similar to the parametri-
sation customarily used for auto-Gaussian models. They show that the alternative (centered)
parametrisation overcomes the difficulty of interpretation of the non centered model.

In the model given by Eq. (5), the term XT
i β (called ‘‘large-scale model component by Caragea

and Kaiser (2009)), determines the expected value of pi. On average over the entire field,
exp(XT

j β)

1+exp(XT
j β)

corresponds to the proportion of Zi that are equal to 1. Variances, covariances and other high-
order portions of the data structure are determined by the second term of Eq. (5), Caragea and
Kaiser (2009) called it the small-scale model component. About the modelling of Markov random
field and the interpretation of the coefficients of logit(pi) in terms of small or large scale-structure,
see Kaiser and Cressie (2000) or Cressie (1993) p.114. In Caragea and Kaiser (2009), the parameters
were estimated by MPL.

Hughes et al. (2011) focused on the methods for estimating the coefficients and parameters
in the centered autologistic model. They used MPLE and also parametric bootstrap, Monte Carlo
Maximum Likelihood (MCML) and MCMC Bayesian approaches to infer the parameters. They
also discussed ways to optimise the effectiveness of their algorithms. They also compared the
performance of the three approaches in an in-depth simulation study. They found that ‘‘inference for
regression parameters in the centered model is reliable only for reasonably large lattices (n > 900)
and no more than moderate spatial dependence’’. They recommended the MPLE for its easier
implementation and much faster execution. A package for the free software R is available estimating
the centered spatial models parameters (Hughes, 2014). More recently, Wolters (2017) discussed
coding and centering in spatial autologistic models and he recalled the good properties of MPLE for
estimating non-centered models parameters. It is not always true in the centered case because PL
can exhibit multiple local optima.

1.2. Spatio-temporal autologistic models

Now let Zt denote a random field indexed by discrete time t . Zit for i = 1, . . . , n and t ∈ Z
is a random binary variable indexed by position si and time t . And the covariates X are k-vectors
indexed by i and t .

Zhu et al. (2005) generalised the autologistic regression models to account for covariates, spatial
dependence, and temporal dependence simultaneously. The model specifies the joint distribution
of {Zt : t ∈ Z} by a family of conditional distributions:

P(Zt1 , . . . , Zt2 |Zt; t ̸= t1, . . . , t2) (6)

∝ exp

⎧⎨⎩
t2∑

t ′=t1

⎡⎣ n∑
i=1

XT
i,t ′βZi,t ′ +

1
2

n∑
i=1

∑
j∈Ni

ρ1Zi,t ′Zj,t ′

⎤⎦+

t2+1∑
t ′=t1

n∑
i=1

ρ2Zi,t ′Zi,t ′−1

⎫⎬⎭ .

for all t1, t2 ∈ Z2 such that t1 < t2, where Xi,t is the k-vector of the covariates at site si and time t .
Note that the specification is consistent for all t1 < t2, and the joint distribution of {Zt : t ∈ Z} can
be shown to exist by Theorem 2.1.1 of Guyon (1995). If Ni,t = {(j, t) : j ∈ Ni} ∪ {(i, t − 1), (i, t + 1)}
denotes the neighbourhood set for the position si and the tth time point, the full conditional
distribution of the model is

[Zi,t |Zi′,t ′ : (i′, t ′) ̸= (i, t)] = [Zi,t |Zi′,t ′ : (i′, t ′) ∈ Ni,t ] and

logit(P(Zi,t = 1|Zi′,t ′ : (i′, t ′) ∈ Ni,t;X)) (7)

= XT
i,tβ +

∑
j∈Ni

ρ1Zj,t ′ + ρ2(Zi,t−1 + Zi,t+1).

Note that in model (6), the coefficients corresponding to the ρij of Eqs. (3), (4), (5), are all the
same and they equal ρ1 meaning that all the spatial neighbour’s relations have the same intensity.
The coefficient ρ2 corresponds to a ‘‘temporal’’ autoregression, which is the same regardless of
spatial position and time. On the other hand, Zheng and Zhu (2008) pointed out that one drawback
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of the parameter estimation for the spatio-temporal autologistic regression model presented by Zhu
et al. (2005), was based on MPLE whose statistical efficiency is not well established in the centered
case. Zheng and Zhu (2008) suggest a fully Bayesian approach and compared it to estimation via
MPL or MCMC Maximum Likelihood. Another drawback is the difficulty of using model (7) for a real
application. Indeed it seems unrealistic to model the probability of an event occurring in terms of
the future.

It is probably why Zhu et al. (2008) developed a spatio-temporal autologistic regression model
which depends only on the past. They suggested to infer the model parameters by maximum
Likelihood estimation. On one hand, they assume that the temporal dependencies satisfy the
following property [Zt|Zt ′ , t ′ = t − 1, t − 2, . . .] = [Zt|Zt ′ , t ′ = t − 1, . . . , t − τ ] i.e. the model is a
Markov model of order τ (the distribution of Zt depends to the past only through the τ last times).
On the other hand, for a given time t , the spatial field is a spatial Markov random field and the
conditional probabilities are given by

logit
[
P(Zit = 1|Zjt , j ∈ Ni; Zt ′ , t ′ = t − 1, . . . , t − τ ;X)

]
(8)

= XT
i,t ′β +

∑
j∈Ni

ρ1Zj,t +

τ∑
s=1

ρ1+sZi,t−s.

Here the model allows the temporal autoregression to be of order greater than 1. And the coeffi-
cients ρ1+s depend on the order s of the autoregression. For instance for the spread of an illness, we
can expect that all these coefficients are positive which means that the probability increases with
the age of the symptoms. However, nothing is said about the existence of the joint distribution of
such a process in the paper.

To overcome the difficulties of interpretation identified by Caragea and Kaiser (2009) in the
spatial case, Wang and Zheng (2013) were the first to develop a centered parametrisation version
of Eq. (8) in a spatio-temporal framework. They propose the following modelling:

logit(P(Zi,t = 1|Zi′,t ′ : (i′, t ′) ∈ Ni,t;X)) (9)

= XT
i,tβ +

∑
j∈Ni

ρ1Z∗

j,t + ρ2(Z∗

i,t−1 + Z∗

i,t+1),

with Z∗

i,t = Zi,t −
exp(XT

i,tβ)

1 + exp(XT
i,tβ)

. (10)

They proposed Expectation–Maximisation (EM) algorithm to maximise the Pseudo-Likelihood
and Monte Carlo Expectation–Maximisation Likelihood, as well as consider Bayesian inference to
obtain the estimates of model parameters. They found that Monte Carlo Expectation–Maximisation
Likelihood algorithm is optimal taking into account the criteria of calculation time and accuracy of
the estimate. Further, they compared the statistical efficiency of these approaches.

In the next section we propose a new centered spatio-temporal model and we believe that such
model is better adapted for parameter interpretation in a spatio-temporal context.

2. A new centered spatio-temporal autologistic model

2.1. Model specification

In this section, we propose a new spatio-temporal autologistic model, specified by Markov field
Markov chain (Gaetan and Guyon, 2008). It can include spatio-temporal covariates. In order to
avoid bias and interpretation problems caused by spatial self-regression, we propose to center the
corresponding covariates term. We define the model as follows. First, we assume that, conditionally
to the covariates, {Zt , t = 1, 2, . . .} is a Markov chain:

[Zt |Zt−1, Zt−2, . . . ,X] = [Zt |Zt−1,Xt ]
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where X is the spatio-temporal process of vector of the covariates (Xi,t )1≤i≤n,1≤t≤T . Moreover, we
assume that Zt is a Markov random field conditional on Zt−1 with spatial neighbour structure Ni,
that means

[Zi,t |Zj,t , j ̸= i; Zt−1,Xt ] = [Zi,t |Zj,t , j ∈ Ni, Zt−1,Xt ].

More precisely, we define the conditional distribution of Zi,t by:

logit(P(Zi,t = 1|Zj,t; j ̸= i, Zt−1,Xt )) = XT
i,tβ + ρ1

∑
j∈Ni

Z∗∗

j,t + ρ2Zi,t−1, (11)

where Z∗∗

i,t = Zi,t −
exp(XT

i,tβ + ρ2Zi,t−1)

1 + exp(XT
i,tβ + ρ2Zi,t−1)

. (12)

We will discuss the interest of this centering in the next section but we can note that this new
centered specification looks like a hierarchical model with a latent auto-regressive model of order
1 given by:

logit(P(Zi,t = 1|ξi,t ,Xi,t )) = XT
i,tβ + ξi,t ,

ξi,t = ρ2ξi,t−1 + ωi,t , with
Zi,t−1 ≈ ξi,t−1 and∑

j∈Ni

Z∗∗

j,t =

∑
j∈Ni

(Zj,t −
exp(XT

j,tβ + ρ2Zj,t−1)

1 + exp(XT
j,tβ + ρ2Zj,t−1)

) ≈ ωi,t .

2.2. Model interpretation

There are two main differences between one-step centered model of Wang and Zheng (2013)
given by Eq. (10) and our new centered model given by Eq. (12). The first one is that we do not center
de temporal term Zi,t−1. Indeed, there is no difficulty for the interpretation of ρ2 because unlike the∑

j∈Ni
Zj,t , Zi,t−1 is known at time t and can be treated like the other covariates. The second one is

that the Zj,t ’s in the term of spatial autoregression, are centered differently: the former is centered

with
exp(XT

j,tβ)

1+exp(XT
j,tβ)

, and the latter is centered with
exp(XT

j,tβ+ρ2Zj,t−1)

1+exp(XT
j,tβ+ρ2Zj,t−1)

. It has to be noted that due to

the link function, the expectation E(Zit |Zt−1,Xt ) equals
exp(XT

i,tβ+ρ2Zi,t−1)

1+exp(XT
i,tβ+ρ2Zi,t−1)

. The construction of this

new centered autologistic model is explained as follows; the aim of the modelling is to separate
the large- and small-scale structures. The parameters of spatio-temporal dependence ρ1, ρ2 can be
interpreted and they have a practical interpretation if the event modelled is an illness:

• Instantaneous spatial dependence ρ1. It quantifies the spatial autocorrelation between neigh-
bours for the occurrence of the event at each time. To model illness, we expect some kind
of common sensibility quantified by ρ1 ≥ 0. Strong spatial dependence indicates a highly
aggregated spatial structure, which makes it possible to identify and monitor the aggregated
zones with high infection possibility.

• Temporal dependence ρ2. It quantifies the temporal dependence on the previous year’s status.
Again, we expect that the illness likely remains at a place such that 0 ≤ ρ2. (ρ2 < 0 would
indicate a temporal evolution with high frequency at 2-year cycle, this is not adapted for most
of the biological processes); ρ2 is a term of autoregressive regression. Strong temporal depen-
dence can be interpreted as a smooth temporal evolution. If the external effects (covariates)
are constant, the individuals have a tendency to keep their status. For instance, if we consider
annual data (meaning that t refers to the year), this may indicate no need to monitor two
consecutive years if the exterior factors are the same between two years.
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2.3. Existence of the joint distribution

Many authors have discussed the existence of a joint multivariate distribution defined by a
set of univariate conditional distributions for auto-models that include the autologistic models.
Hammersley & Clifford were the first to work on this subject in 1971 (unpublished manuscript!) and
the results were written and generalised for instance in Grimmett (1973), Kaiser and Cressie (2000)
and Gaetan and Guyon (2008). It is probably not possible to show the existence of the distribution
of the whole spatio-temporal processes defined by Eq. (11) for all years t and sites of the lattice si. In
our case, the functionals that appear in the right side of Eq. (11) are not invariant by permutating the
temporal indices. Note that the model of Zhu et al. (2005) given by Eq. (6) satisfies this invariance
necessary for the joint distribution to exist, but it raises the problem of using the future (Zi,t+1)
to model the present (Zi,t ). To prove the existence of our process, we consider the framework of
Markov chain of Markov fields presented in Guyon and Hardouin (2002). Using the Hammersley–
Clifford theorem given for instance in Gaetan and Guyon (2008), we can show the existence of the
joint law of spatial process Zt for a fixed t given the past of Zt and the current information about the
covariates and derive an expression of this conditional joint spatial distribution. Thus, the existence
of the distribution of the whole spatio-temporal process, is trivial by recursivity. In addition, we
can also obtain the formula of the conditional transition probabilities of the spatial Markov chain.
We have the following result.

Theorem 2.1. Let (Zt )(0≤t≤T ) be the spatio-temporal process defined by (11), let us denote FX
t =

σ {Xi,s, 1 ≤ i ≤ n, s ≤ t} and FZ
t = σ {Zi,s, 1 ≤ i ≤ n, s ≤ t} the σ -algebra generated by the covariates

and the process of interest respectively.
Given FZ

t−1∧FX
t the conditional joint law of Zt denoted by πt (. | FX

t ,FZ
t−1) is well defined. Moreover,

for z = (z1, . . . , zn) ∈ {0, 1}n, the spatial conditional joint law is of the form

πt (z | FX
t ,FZ

t−1) = C(FX
t ,FZ

t−1) exp(
∑
i∈S

Φi(zi) +

∑
{i,j}

Φi(zi, zj)) with

Φi(zi,FX
t ,FZ

t−1) = zi

⎛⎝XT
i,tβ − ρ1

∑
j∈Ni

exp(XT
j,tβ + ρ2Zj,t−1)

1 + exp(XT
j,tβ + ρ2Zj,t−1)

+ ρ2Zi,t−1

⎞⎠
Φi(zi, zj) = ρ11{j∈Ni}zizj

and C(FX
t ,FZ

t−1) can be considered as constant if the past of process Zt and the current values at time
t of the covariates are known.

The transition probabilities of the Markov chain are

P(y, z | FX
t ) = C(y,FX

t )exp

⎛⎝∑
i∈S

(ziXT
i,tβ + ρ1

∑
j∈Ni

zizj)

⎞⎠
× exp

⎛⎝∑
i∈S

zi(ρ2yi − ρ1

∑
j∈Ni

exp(XT
j,tβ + ρ2yj)

1 + exp(XT
j,tβ + ρ2yj)

− ρ2yi)

⎞⎠
Proof. We use the Hammersley–Clifford theorem given for instance in Gaetan and Guyon (2008) in
a conditional form. With the above notation, let us define two assumptions given by (13) and (14)
that says that if

logit(P(Zi,t = zi|Z i
t = z i,FX

t ,FZ
t−1)) (13)

= Ai(z i,FX
t ,FZ

t−1)Bi(zi,FX
t ,FZ

t−1) + Ci(zi,FX
t ,FZ

t−1) + Di(z i,FX
t ,FZ

t−1)

and if ∀i ̸= j, it exists αi and ρij = ρji such that

Ai(z i,FX
t ,FZ

t−1) = αi(FX
t ,FZ

t−1) +

∑
j̸=i

ρijBj(zj,FX
t ,FZ

t−1) (14)



8 A. Gégout-Petit, L. Guérin-Dubrana and S. Li / Spatial Statistics 31 (2019) 100361

The conditional laws satisfying (13) and (14) are consistent with a joint distribution that is a Markov
random field. If we rewrite (11) in the following form, it is easy to see that our model satisfies the
required conditions:

logit(P(Zi,t = 1|Zj,t; j ̸= i, Zt−1,Xt ))

= XT
i,tβ − ρ1

∑
j∈Ni

exp(XT
j,tβ + ρ2Zj,t−1)

1 + exp(XT
j,tβ + ρ2Zj,t−1)

+ ρ2Zi,t−1  
=αi(FX

t ,FZ
t−1)

+

∑
j̸=i

ρ11j∈Ni  
ρij

Zj,t
Bj(zj)

.

The expression of π comes directly from Hammersley–Clifford theorem and the transitions proba-
bilities from Guyon and Hardouin (2002). □

3. Comparative simulation study

3.1. Simulation study objective

The idea of proposing the new centered model is to make an agreement between large-scale
model and data structure. In particular, if parameters are intended to reflect an overall mean or
the effect of covariates, then they should have a constant interpretation across varying levels of
statistical dependence. In this section, we compare three models: the model without centering that
Caragea and Kaiser called ‘‘traditional’’ and one-step centered as well as the new centered model,
defined again below. We want to verify if the marginal structure of data reflects the large-scale
structure. The three studied models are given by the general following equation differing according
to the kind of centering of Z∗∗

i,t .

logit(pi,t ) = XT
i,tβ + ρ1

∑
j∈Ni

Z∗∗

j,t + ρ2Zi,t−1,

Z∗∗

i,t = Zi,t traditional model (15)

Z∗∗

i,t = Zi,t −
exp(XT

i,tβ)

1 + exp(XT
i,tβ)

one-step model (16)

Z∗∗

i,t = Zi,t −
exp(XT

i,tβ + ρ2Zi,t−1)

1 + exp(XT
i,tβ + ρ2Zi,t−1)

new model (17)

The agreement between spatial large-scale model structures and marginal data structures has
been already examined by Caragea and Kaiser (2009) for both centered and traditional spatial
autologistic regression models. They showed that the realised trajectories from the traditional
autologistic regression model cannot reflect the large-scale structure, and this difficulty can be
alleviated by centered parametrisation.

In this paper, we focus on examining the time variation of the large-scale model structure
and marginal data structure for the three spatio-temporal autologistic models mentioned above
in the case when the covariates depend only on the time t but not on the location on the grid.
Note that Caragea and Kaiser (2009) have already carried out a simulation study with the purpose
to verify the agreement between the spatial model and spatial data structures according to the
different values of the spatial covariates.

Therefore, we have chosen to simulate trajectories of a dynamic process of Markov random field
that have a temporal large-scale structure with a deterministic tendency. For site si at year t , we
define a large model structure with one temporal covariate: logit(pi,t ) = β0 +β1Xit +ρ1

∑
j∈Ni

Z∗∗

j,t +

ρ2Zi,t−1, where Xit = Xt is a temporal covariate, that is spatial constant at year t. Thus the average
large-scale model at year t is:

Lt =
1
n

n∑
i=1

exp(β0 + β1Xt )
1 + exp(β0 + β1Xt )

=
exp(β0 + β1Xt )

1 + exp(β0 + β1Xt )
. (18)
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Moreover, we can also compute an average scale conditional to the past defined by:

Ct =
1
n

n∑
i=1

exp(β0 + β1Xt + ρ2Zi,t−1)
1 + exp(β0 + β1Xt + ρ2Zi,t−1)

. (19)

It can be noted that this process is not deterministic but specific to each realisation of the field Zt−1.
To represent marginal data structure, the marginal empirical data mean of the Markov random

field at year t is computed from a simulated field at time t as:

Dt =
1
n

n∑
i=1

Z sim
it . (20)

The objective of the simulation studies presented here is to compare the behaviour of Lt , Ct
and that of Dt for the three different models differing by the kind of centering of the spatial
autoregression.

3.2. Sampling algorithms

Hughes et al. (2011) proposed to use perfect sampling to generate Markov Random Field (MRF)
samples. The advantage of the perfect sampling compared to Gibbs sampling is that we do not
need the burn-in step, nor do we need to decide the spacing numbers. It gives us the exact draws
from a given target distribution when the algorithm completes, details are given in Kendall (2005).
However, its algorithm running time is random even if still finite. We do not know at which moment
the lower chain and the upper chain coalesce. So the number of repetitions is random. In our
case, we have to generate a Markov chain Markov random field, the computation time of such an
algorithm is quite difficult to control.

Here we use Gibbs sampler but start at a ‘‘perfect simulated’’ sample, we call it PGS sampling.
It is less time consuming than perfect sampling, and do not need to decide burn-in and spacing
when compared with Gibbs sampling. The PGS sampling was often used to generate the simulated
trajectories of autologistic model (Zhu et al., 2008; Zheng and Zhu, 2008; Wang and Zheng, 2013).

3.3. Simulated data

We focus on two types of large-scale model structures, the first one without covariate and
the second one with increasing temporal tendency given by a covariate depending only on the
time. Both models were for data on a 20 by 20 lattice for 50 time units; the details being given
in the two following Sections 3.3.1 and 3.3.2. We simulated data according to these structures
but with different values of ‘‘auto-regression parameter’’ (ρ1, ρ2), in order to evaluate the joint
effects of (ρ1, ρ2) to the agreement between large-scale structure models and data structures. One
trajectory of each of the three models is drawn for each configuration of (ρ1, ρ2). To study the
dispersion of the empirical large scale structure and confirm the possible tendencies exhibited by
the trajectories, we have performed 100 independent realisations of process Dt for each of the three
models (traditional, one-step and new centered) and specified by different values of (ρ1, ρ2) and
then computed and drawn the empirical fluctuation dynamical intervals. Simulations results are
presented in the following sections.

3.3.1. Model 1
We first consider a model without covariates (that is with only an intercept). It is given by

logit(pit ) = β0+ρ1
∑

j∈Ni
Z∗∗

j,t +ρ2Zi,t−1, there is no temporal covariate in this model apart the term of
temporal auto-regression. The baseline level of infection is chosen via β0 such that exp(β0)

1+exp(β0)
= 0.2

leading to a constant expected model structure constant Lt = 0.2. The initial field is generated
by independent Bernoulli variables with parameter p = 0.2. To see the effect of the intensity
of autocorrelation given by the two parameters (ρ1, ρ2) on the difference between the models,
we generate simulated data and draw one trajectory from each model with different values of
parameters (ρ1, ρ2) ∈ {0.3, 0.5, 0.7}2. The empirical confidence intervals were computed with
100 realisations of independent trajectories for each model and for different values of parameters
(ρ1, ρ2) ∈ {0.5, 0.7}2.
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Fig. 1. Comparison between large-scale model structure Lt (represented by black line), the expected means Ct according to
the past (lines) and empirical mean of data structures Dt for the traditional (blue dashed), the one-step (red dot-dashed)
and new (violet dots) centered models for different values of auto-regression parameters (ρ1, ρ2). The grid is 20 × 20,
and 0 ≤ t ≤ 50, baseline infection exp(β0)

1+exp(β0)
= 0.2.

3.3.2. Model 2
We consider here a model with a temporal trend. We consider large-scale structures with one

temporal covariate: β0 + β1Xt . As said above, Xt is constant spatially for each year but shows
monotonic increasing with time: Xt = t .

We choose β0 such that exp(β0)
1+exp(β0)

= 0.1 and the initial field is generated by independent Bernoulli
variables with parameter p = 0.1. With this model, we have Lt =

exp(β0+β1t)
1+exp(β0+β1t)

, a monotonic
increasing function. With the chosen coefficients, Lt increases from 0.1 at time one to 0.94 at time
50. Again, for a trajectory, we compute the conditional mean given the past. Unlike the model
without covariates, we expect an empirical large-scale structure that increases with time.

3.3.3. Results
From Figs. 2 and 4, we see that the spread of the realisations of the empirical mean Dt is not

very large and that for the given value of the parameter (ρ1, ρ2), the models may differ more or
less. We see that scatter of the empirical average of the spatial field for each t is low enough to
trust and interpret the difference between the individual curves shown in Fig. 1.

In Fig. 1 (resp. Fig. 3) we draw one trajectory from each model without covariate (resp. with
covariates) for different values of ρ1, ρ2 to study the difference between the models according to
these parameters that reflect the dependence level between the Zi,t . We see that the empirical
mean Dt for the traditional model is always greater than the expected large scale structure and
than the realisation of Dt for the one-step centered and new centered models. The value of Dt for
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Fig. 2. Empirical confidence curves for the large scale structures Dt for the model without covariate. The grid is 20 × 20,
t = 50, baseline infection exp(β0)

1+exp(β0)
= 0.2. About the centering, traditional (resp. one-step and new centered) is drawn in

blue dashed, (resp. red dot-dashed and violet dots).

the traditional model is not sensible to the value of the temporal autoregression parameter ρ2 but
it is very sensible to the spatial auto-regression parameter ρ1 and it increases as ρ1 increases.

Regarding the centered models, they show the same large scale behaviour when parameter ρ1
equals 0.3 or 0.5. For ρ1 = 0.7, the two centered models show different large scale behaviour but
the Dt for new centered model agrees with the expected mean behaviour. The difference between
them increases as ρ2 increases.

In summary, the difference between data simulated according to the one-step model and the
new centered autologistic model is small except when both spatial and temporal dependences are
relatively strong. It can be seen from the simulated data that the traditional or one-step centered
model over-represents the large-scale structure and incorrectly differs from the expected structure
of the model. As a result, interpretations are complex and can lead to erroneous conclusions.

4. Estimation

From now on, we only consider the new centered model. We propose here a method of
estimation by Pseudo-Likelihood Maximisation (MPL) and a method for selecting the most likely
neighbourhood structure of the data set. We show their performances by testing them on simulated
data.

4.1. Estimation by Pseudo-Likelihood Maximisation

Since the structure of the new centered autologistic model is more complicated than the
traditional or the one-step centered one, both Monte Carlo Maximum Likelihood Estimation (MCML)
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Fig. 3. Comparison between large-scale model structure Lt (represented by black line), the expected means Ct according to
the past (lines) and empirical mean of data structures Dt for the traditional (blue dashed), the one-step (red dot-dashed)
and new (violet dots) centered models for different values of auto-regression parameters (ρ1, ρ2). The grid is 20 × 20,
and 0 ≤ t ≤ 50, baseline infection exp(β0)

1+exp(β0)
= 0.1, and covariate coefficient β1 = 0, and covariate Xt = t .

and Bayesian methods can be very heavy and sophisticated to implement. We propose to estimate
the parameters of our model using the estimator that maximises Pseudo-Likelihood. It is very easy
to implement. Some authors have studied the mathematical properties such as convergence of this
estimator under the constraint of homogeneity and ergodicity of the Markov Random Field Markov
Chain and other required assumptions can be found in Guyon and Hardouin (2002). The imbrication
of the parameters in the definition of the centered variables Z∗∗

i,t ’s (Eq. (17)) and the presence of
covariates make these conditions hard to verify, that is why, in the following, we only look at the
empirical behaviour of this estimator. The Pseudo-Likelihood for our model is given by the following
formula:

PL(β, ρ1, ρ2) =

T∏
t=1

( ∏
1≤i≤n

pit

)
=

T∏
t=1

( ∏
1≤i≤n

exp
(
XT

i,tβ + ρ1
(∑

j∈Ni
Z∗∗

j,t

)
+ ρ2Zi,t−1

)
1 + exp

(
XT

i,tβ + ρ1
(∑

j∈Ni
Z∗∗

j,t

)
+ ρ2Zi,t−1

)) . (21)

MPL Estimator is the vector of parameters θ = {β, ρ1, ρ2} that maximises PL(β, ρ1, ρ2). We see that
the spatial auto-regression covariate Z∗∗

j,t imbricated the couple of parameters (ρ1, ρ2) themselves
so that it is not possible to consider Z∗∗

j,t as a common ‘‘external covariate’’. For this reason, the
maximisation has to be made by an Expectation–Maximisation algorithm. We give the details of
this algorithm in the next section.
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Fig. 4. Empirical confidence curves for the large scale structures Dt for the model with temporal covariate Xt = t . The
grid is 20 × 20, t = 50, baseline infection exp(β0)

1+exp(β0)
= 0.1, and covariate coefficient β1 = 0, and covariate Xt = t . About

the centering, traditional (resp. one-step and new centered) is drawn in blue dashed, (resp. red dot-dashed and violet
dots).

4.1.1. Algorithm
We applied the EMPL (Expectation–Maximisation Pseudo-Likelihood) algorithm, the principle

is the same as described in Zheng and Zhu (2008), but with two iteration steps to accelerate the
numerical algorithm/calculation.

The steps are as follows:

• Initialisation: to obtain the estimation of θ1 = (β, ρ2), denoted by (β̃, ρ̃2), from model
logit(pit ) = XT

i,tβ + ρ2Zi,t−1, we maximise the corresponding log Pseudo(partial)-Likelihood
by Quasi-Newton.

• Step 2: to obtain the estimation of θ = (β, ρ1, ρ2), denoted by θ̆ = (β̆, ρ̆1, ρ̆2), for the new
centered autologistic model:

1. Initialisation: Set initial values: θ0
= (β̃, 1, ρ̃2)

2. Expectation: Given θl−1, compute the Z∗∗

j,t ’s by removing the corresponded trend.
3. Maximisation: Obtain θl by maximising the log Pseudo-Likelihood by Quasi-Newton.
4. Go to 2

• Obtain estimates (β̆, ρ̆1, ρ̆2).

4.1.2. Variance of the MPLE
Even if the convergence properties of the Maximum Pseudo-Likelihood Estimator are well known

under specified conditions discussed above, the variance of the estimator has to be carefully
estimated. For the variance–covariance matrix of the coefficients, we propose to compute the matrix
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U′WU as if we were in the case of a classic variance in the case of Maximum Likelihood in the logistic
case. The matrix U is a nT ×p matrix defined by these rows Uit,. = (1, XT

i ,
∑

j∈Ni
Yjt , Yi,t−1) for each

(i, t), 1 ≤ t ≤ T and 1 ≤ i ≤ n. W is the diagonal nT × nT matrix with coefficients being equal to
p̆it (1 − p̆it ) that depends on the estimation parameters (β̆, ρ̆1, ρ̆2).

We compared the variances of the estimators with ones computed by ‘‘bootstrap’’ on simulated
data.

4.2. Model choice

Although the estimation method is efficient for a given neighbourhood structure, it is necessary
to select the best one. Indeed, in the context of modelling the occurrence of a disease, learning the
structure of the neighbourhood is a way to understand the mechanisms of disease spread.

Firstly, we had the idea of adapting the ABC method (for Approximate Bayesian Computation)
proposed by Grelaud et al. (2009) in order to choose the best model for the neighbourhood. ABC
is a Likelihood-free inference method in the Bayesian framework that is very convenient when the
Likelihood is not available in a closed form. First introduced by Pritchard et al. (1999) and expanded
in Beaumont et al. (2002) and Marjoram et al. (2003), ABC method was adapted by Grelaud et al.
(2009) for model choice in Gibbs Random Fields (GRF). We first thought about using this method
because our model is not so far from a GRF. But because of the centering parametrisation, it
is not possible to produce a sufficient statistics in order to compute a simple distance between
the simulated field and the observed one. We can see in equations of the spatial joint laws of
Theorem 2.1, that the parameters (β, ρ1) are nested in the potentials depending on the spatio-
temporal field Z. We tried this method with different statistics without success. However, this
sophisticated method is not essential here because we observed on simulated data that the Log-
Pseudo-Likelihood value is a very simple and performant indicator to choose the model of a given
data set.

The approach we propose is the following: we use‘‘experts opinions’’ to determine a set of
possible neighbours structures to consider. For each structure, we estimate the parameters and
simply choose the structure that optimises Log-Pseudo-Likelihood.

4.3. Simulation study

4.3.1. Model 1
The first configuration was again 20 ∗ 20 grid for 15 years without covariate. The initial field is

generated by Bernoulli distribution with parameter 0.1 and model parameters are β0 = −1.4, β1 =

0, ρ1 = 0.5, ρ2 = 0.5.
We standardise the neighbourhood structure here: we suppose the points si’s are on a grid, and

we assume their spatial distribution is like a matrix — each point is located on the intersection of a
row and a column. All models considered in this section to generate simulated data have the same
structure of neighbourhood: each point has four neighbours on the same row (the four nearest that
is in our case the two nearest on each side) and also two neighbours in the same column. Points
of the first row (resp. second row) have only two (resp. three) neighbours on the same row and
points on the first and second columns have only one neighbour on the same column (and so on
for the last row or column). This configuration is denoted vr = 2 (for 2 neighbours on each side in
the row) and vc = 1 (resp. 1 in the column). Fig. 7 shows such kind of neighbourhood for vr = 4
and vc = 2.

For our simulation study to infer the neighbour’s structure, we assume that all the neighbour-
hood structures considered are regular that is, the definition of the neighbourhood is the same for
all the points of the grid. And we only consider the neighbourhood structures defined by the number
of neighbours on each side in the same row vr (or in the same column vc). We do not consider the
possibility of having neighbours on the diagonal.
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Table 1
Maximum Pseudo-Likelihood estimation for Model 1 without covariate, true values
are in brackets. Variance estimators are computed by our proposed method (est
st.estimation) and by repetitions method (boot st.estimation).

β0 β1 ρ1 ρ2

Mean −1.47(−1.4) 0.003(0) 0.519(0.5) 0.560(0.5)
est st.deviation 0.066 0.014 0.028 0.071
boot. st.deviation 0.083 0.018 0.034 0.068

Table 2
Maximum Pseudo-Likelihood estimation for Model 2 with temporal covariate, true
values are in brackets. Variance estimators are computed by our proposed method
(est st.estimation) and by repetitions method (boot st.estimation).

β0 β1 ρ1 ρ2

Mean −2.757(−2.8) 0.094(0.1) 0.488(0.5) 0.486(0.5)
st.deviation 0.097 0.021 0.042 0.130
boot. st.deviation 0.108 0.022 0.073 0.130

4.3.2. Model 2
Again a 20∗20 grid for 15 years with one temporal covariate with large variation first increasing

from 1 to 8 the 8 first years and next decreasing by 1 until the year 15. x(t) = t for 1 ≤ 8 and
x(t) = 14 − t for 1 ≤ 7, β0 = −2.8, β1 = 0.1, ρ1 = 0.5, ρ2 = 0.5. The structure of neighbourhood
is given by vr = 2 and vc = 1.

4.3.3. Estimation results
We used again PGS sampling methods described in Section 3.2 to simulate trajectories of the

process on a 20 ∗ 20 grid for 15 years in different configurations. The purpose is to study the
performance of the estimations and of the model selection procedure. We compute the estimations
via EMPL algorithm detailed in Section 4.1.

For the variance, we compared the values estimated by the method explained above on a
sample, with the experimental value of the variance when we estimate the parameters of B = 500
independent repetitions of the same model. Results of the inference for Model 1 (resp. Model 2) are
given in Table 1 (resp. 2).

Figs. 5 and 6 show the dispersion of B = 500 estimations of B independent simulations of each
model.

All these results show the good performance of the Maximum Pseudo-Likelihood Estimator and
its standard deviation. We have to note that the method is very easy to implement and the results
are available almost instantly while it would be not the case with MCMC or Bayesian methods.
It should also be noted that we have made estimates on simulated data generated with different
parameter values and that the method’s performance has remained as good as above.

4.3.4. Model choice results
We first show the effects of different choices of neighbourhood graphs on the estimation of

the spatial auto-regression parameter ρ1 of Eq. (11). For a given simulated data set, we perform
estimations of the parameters for different graphs of neighbourhood. Results are shown in Table 3
that confirms the intuitive result that the estimation of the spatial autoregressive parameter ρ1
decreases with the number of neighbours. We have to notice that this decrease is not proportional
to the number of neighbours of each point of the grid. Moreover estimation with a wrong neigh-
bourhood structure does not affect the estimation of the other parameters of the models (regression
on the past parametred by ρ2 and on the covariate by β).

To see the good performance of the model choice rule, we simulated 500 independent realisa-
tions of different kinds of models under three different neighbourhood structures, without (resp.
with a temporal covariate) and for three different values of ρ1. We estimated the parameters under
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Fig. 5. Box-plot of B = 500 estimations of the four parameters in Model 1. Red lines show the true values of parameters.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Estimation by Pseudo-Likelihood in different models for neighbourhood. vr (resp. vc ) is the number
of neighbours on each side of a point on the raw (resp. on the column). Estimations for the true
model are in red and the true values of the parameters are in brackets.
Model vr vc β0 β1 ρ1 ρ2

1 1 1 −1.434 0.005 0.604 0.539
2 2 1 −1.470(−1.4) 0.003(0) 0.519(0.5) 0.560(0.5)
3 2 2 −1.467 0.003 0.420 0.560
4 3 1 −1.468 0.004 0.427 0.563
5 3 2 −1.475 0.004 0.368 0.563
6 3 3 −1.464 0.004 0.317 0.567

Table 4
Model choice by maximising the Pseudo-Likelihood for a model on a 20∗20 grid for 15 years without covariate. β0 = −1.4,
ρ2 = 0.5 and three different values of ρ1 .
True
model

Selected model

ρ1 = 0.3 ρ1 = 0.4 ρ1 = 0.5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 474 15 5 4 1 1 495 3 2 0 0 0 500 0 0 0 0 0
2 13 451 21 13 1 1 0 486 5 9 0 0 0 499 1 0 0 0
3 0 13 470 0 15 2 0 0 498 0 2 0 0 0 500 0 0 0

six different neighbours structures and choosed the model with the biggest Pseudo-Likelihood.
Results are shown in Table 4 (resp. Table 5).
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Fig. 6. Box-plot of B = 500 estimations of the four parameters in Model 2. Red lines show the true values of parameters.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. Structure of neighbourhood used for the simulations. Green crosses are the neighbours of the red point.

We see that the ability of the rule to detect the true neighbours structure is globally good.
However, it has better performance if the model does not include covariates and almost perfect
while ρ1 ≥ 0.3. Note that if the value of ρ1 is low, it means that the spatial autocorrelation with
the neighbours is low and thus it is not so important to infer the neighbourhood structure properly.
The performance of the rule is degraded by the presence of a covariate and again when the relative
weight of the spatial auto-correlation in the model is lower.
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Table 5
Model choice by maximising the Pseudo-Likelihood for a model on a 20∗20 grid for 15 years with a covariate. β0 = −2.8,
β1 = 0.1, ρ2 = 0.5 and three different values of ρ1 . Xt = t for t ≤ 8 and 16 − t for 8 ≤ t ≤ 15.
True
model

Selected model

ρ1 = 0.3 ρ1 = 0.4 ρ1 = 0.5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 357 60 27 24 15 17 401 42 32 14 2 9 452 27 7 9 2 3
2 60 287 48 73 15 17 40 344 45 52 9 10 18 424 24 31 1 2
3 18 51 314 12 66 39 15 38 390 2 34 21 4 31 438 1 25 1

5. Application to local spread of plant diseases

5.1. Context and modelling

The spectrum of applications of spatio-temporal autologistic models is large. Thus for instance
it was applied for the inference of networks in order to study competition in financial markets
in Betancourt et al. (2018). In our paper, the model was built with application to plant epidemiology.
Indeed, the purpose here is to analyse the spread of the esca grapevine trunk disease over a
14-year period in a vineyard of Bordeaux in France, including 1 980 vines in a block of 30 rows
and 66 columns. Esca is a grapevine trunk disease that remains poorly understood but causing
extensive damage in vineyard worldwide and resulting in major economic losses (Bertsch et al.,
2013; Mugnai et al., 1999). Grapevine esca is a complex dieback disease associated with pathogenic
fungi that degrade the woody part of the vine. It exhibits discoloured foliar symptoms (Mugnai
et al., 1999; Surico et al., 2008; Lecomte et al., 2012). Leaf symptoms are erratic in the extent
that they appear during late spring or summer, however they can appear on year and not the
following one. The disease leads to a decrease in wine quality, and worse, to vine decline and
death at long term. In order to better understand the factors that drive the esca spread, several
studies based on spatio-temporal mathematical modelling have been used. Some of them have
focused on the contagiousness of symptomatic vines in order to improve the prophylactic control
of esca. In Stefanini et al. (2000), a non-centered auto-logistic multinomial statistical model with
autoregression on the past and on the neighbourhood was used to study the spatio-temporal
dynamics of the esca at the scale of a vineyard. However, the modelling and the inference method
were not discussed. More recently, a non-centered autologistic model with Bayesian inference was
also used to analyse a 17-year dataseries resulting from the monitoring of one vineyard since
planting (Zanzotto et al., 2013). In Li et al. (2016), we used join count procedures to analyse
aggregation and spread of the esca over an eight-year period.

The lattice data came from the esca disease monitoring for 14 years between 2004 and 2017 in
a commercial vineyard of the Bordeaux region (vineyard 13 in Li et al. (2016)), which was planted
in 1989 with the cultivar Cabernet Sauvignon (Vitis vinifera), and trained in accordance using the
Guyot trellising system. Within the surveyed plot, the distances between rows and between vines
were respectively 1.4 m and 1.2 m respectively. The foliar esca expression of contiguous vines was
recorded each year at the end of August according to methods described in Li et al. (2016). The
mean annual esca prevalence was 9.5%, varying annually between 1.8 and 16.8%.

We propose to analyse our data with the objectives to understand: (i) the effect of the status of
a vine (symptomatic or not) the year preceding the observation; (ii) the effect of the frequencies of
infected plants among the vine’s neighbours the year preceding the observation on the occurrence of
the symptom for the given vine. Moreover we want to capture the instantaneous spatial correlation
between vines in the same year. We want to choose the best neighbourhood structure for the
previous year’s effect and the instantaneous effect. We are clearly in a context of selecting the best
suited models in terms of past and instantaneous neighbourhood structures.

According to physiopathologists, the neighbourhood structures are ellipses shaped (see Fig. 8).
Indeed, vines are row planted leading to possible anisotropy. The neighbourhood of a vine i located
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Fig. 8. Structure of neighbourhood used for esca data. Green circles are the neighbours of the red point.

in si is given by all vines included in an ellipse defined by its semi-major axis and semi-major axis.
These quantities are denoted vr and vc for the instantaneous neighbourhood Ni (resp. pr and pc for
the past one N p

i ). The model is the following. For a vine i, located in si at time t , the probability to
present the symptom according to the history of the vineyards and the neighbourhood is given by:

logit(pit ) = β0 + β1

⎛⎜⎝∑
j∈Np

i

Zj,t−1

⎞⎟⎠+ ρ1

⎛⎝∑
j∈Ni

Z∗∗

j,t

⎞⎠+ ρ2Zi,t−1 (22)

Twenty five neighbourhood structures were tested for the two auto-regressions (instantaneous
and on the past) corresponding to 625 different models. A neighbourhood was defined by an ellipse
around the vine with a number of neighbours vr (resp. vc) in the direction of the row (resp. column).
vr and vc vary independently from 1 to 5 neighbours leading to 25 possible structures. We also
defined pl and pc the corresponding parameters for the neighbourhood concerning the past.

5.2. Results

The most important result is that the value of the estimation of coefficient ρ2 is very robust
whatever the chosen neighbourhood structure, (ρ2 = 2.28). It means that the risk for a vine
that has already expressed the symptoms the previous year to express them again is multiplied
by exp(2.28) = 9.7 comparing to the same risk for a vine without expression the previous year.
This result corroborates that of Guérin-Dubrana et al. (2013). These authors have shown that a
declining vine has expressed esca symptoms on average two to three times the years before. The re-
expression of leaf symptoms is frequent and reveals the advanced state of internal infection (Maher
et al., 2012).

With respect to other terms of the regression, another important result is that the choice of
the neighbourhood for the instantaneous correlation is more important than the one for the past
regression. The 50 best models according to the PL are those with the instantaneous neighbourhood
defined by an ellipse (that could also be a circle) with radius of 5 in a row direction and 4 in the
other one. This effect is more important than the effect of the past that covers all the possibilities
for the neighbourhood. The interpretation of this instantaneous autocorrelation is likely to be found
in local environmental effects such as soil properties. This effect is not due to a spread of the illness.
Note that it captures a little anisotropy showing more effect along the row, that is a standard result
in vineyards because the vines are nursed along the row. The estimated coefficients and associated
standard deviation for the best model are given in Table 6.

We have already commented the estimation of autoregression ρ2. The value of the one for β0
indicates a spontaneous level of infection equal to exp(−3, 04) = 0.05. β1 is the coefficient of
regression that quantifies the spread of the illness, like in the logistic model, when the level of the
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Table 6
Instantaneous and past neighbour structures and estimated coefficients for the best model on the
real data. Standard deviation of the parameters is in bracket.
vr vc pr pc β0 β1 ρ1 ρ2

5 4 1 1 −3.04 (0.035) 0.178 (0.034) 0.135 (0.006) 2.28 (0.05)

illness is still low, the presence of a one more vine with symptoms in the neighbourhood at a time
multiplied by exp(0.178) = 1.19 the risk to present symptoms the following year. This result shows
the small role of the neighbouring symptomatic vines on the disease occurrences. It confirms those
of Li et al. (2016) which suggested a limited potential of secondary local spread from neighbouring
symptomatic vines.

6. Discussion and conclusion

In this paper, we have proposed a new spatio-temporal model for the study of binary data
evolving with time on a lattice. At each time t , the spatial covariates are centered at its expected
value which depends on the value of the covariates and also on the values of the field in the past.
Simulations studies in Section 3, show the interest of this new centering to demonstrate that what
is naturally taken to represent large-scale model structure in the traditional parametrisation of an
autologistic model does not necessarily reflect marginal structure in the data it generates. This new
model allows the practitioner to make a good interpretation of the spatial regression parameter that
was not possible in previous models. We have shown the ability of the Maximum Pseudo-Likelihood
Estimator to infer quickly the value of the parameters. Maximising Pseudo-Likelihood also allows
us to choose efficiently between models with different neighbourhood structures. Even if the whole
spatio-temporal joint distribution of the process is not proved to exist, we still discuss the existence
of the spatial joint law of the process at any time given the covariates and the past of the process.
This approach seems coherent with the recursive construction of the process along the time.

The model and the method presented in this paper are very suitable and efficient for modelling
the evolution of an illness on a lattice taking into account covariates and spatial auto-correlation.
They allow to measure and quantify effects of the neighbourhood in the past on the occurrence of
the illness at a given time. It should be noted that although we have thought this model by thinking
of a repartition of plants on a lattice, it could be applied to other spatial repartitions provided
that the structure of neighbours is well defined. Moreover, for reasons of sparsity we have chosen
auto-regression coefficients ρ1 and ρ2 which do not depend on the site si or the neighbour sj but
the model can be easily complicated depending on the purpose of the modelling (for instance we
can distinguish several kinds of neighbours). The purpose of the application was to show that our
methodology is easy to implement, the data at our disposal were very simple without covariates
other than data from the past and the state of the neighbours. But the next step is the acquisition
of spatial or spatio-temporal covariates (soil properties, vigour of the plant, water stress.) to better
understand their effect on leaf symptoms. Temporal covariates such as weather information would
also be interesting to incorporate. We also plan to develop a free software package for the R software
that would be available for the analysis of spatio-temporal binary data.
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