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a b s t r a c t

Ultramafic soils display high concentrations of nickel and a number of nutrient deficiencies. Nickel-
hyperaccumulator plants, such as Alyssum murale, have evolved in these environments and developed
specific metal homeostasis, showing concentrations of nickel (Ni) sometimes exceeding 1% in their aerial
biomass. Rhizosphere bacterial communities associated with Ni-hyperaccumulator plants can differ from
those of non-accumulating plants growing on the same site. Among the edaphic factors that could in-
fluence the phylogenetic structure of the bacterial communities, altitude and metal-bioavailability such
as Ni in particular, could be significant. Our objectives were to understand the specific changes in the
structure of the A. murale rhizosphere bacterial community that occurred across two gradients: elevation
and Ni geochemistry, using a high-throughput sequencing technique (454-pyrosequencing). In this
study, Chloroflexi was the major phylum present, with 53e77% of relative abundance. Moreover, we
found that the higher the soil's chemically-available Ni contents, the higher was the relative abundance
of Proteobacteria (particularly Alphaproteobacteria) and Actinobacteria. In contrast, the abundance of
Chloroflexi decreased with increasing levels of available Ni. Our results demonstrate that the chemical-
availability of Ni in the studied soil drives the bacterial community diversity in the rhizosphere of
A. murale, regardless of elevation gradient and other soil physicochemical parameters.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Soil is the physical, chemical and biological support of primary
production of terrestrial ecosystems and therefore plays a key role
in terrestrial biogeochemical cycles. The rhizosphere e i.e. the soil
volume that is directly influenced by living roots - is the most
intense biological reactor of terrestrial ecosystems. The rhizosphere
is a unique interface: roots exert different actions on the external
environment and create physicochemical conditions that are
different from those of non-rhizospheric soil, i.e. by providing C
substrate to microbes, as the result of their rhizodeposition (Benizri
nnement, Universit�e de Lor-
0602, Vandoeuvre-l�es-Nancy,

Benizri).
et al., 2007). Thus, rhizosphere soil hosts more than one billion
bacteria per gram of soil, making this compartment the mostly
colonized in comparison with bulk soil (Pankhurst et al., 1996).
Rhizosphere bacteria provide fundamental ecological functions
thereby contributing to ecosystem services such as soil fertility,
biological regulation or water purification, which are essential for
the primary production of both agricultural and contaminated soils,
as well as those soils naturally rich in trace elements (TE).

The development of methods using plants, namely phytor-
emediation, is of been of increasing interest over recent decades
(Cunningham and Ow, 1996; Bani et al., 2015). Phytoremediation
entails cultivating hyperaccumulator plants in areas which are
either polluted or naturally rich in TE. These plants extract metals
from the soil and transport them to their aerial parts, where they
are accumulated. The term 'hyperaccumulator' defines those plants
able to accumulate metals in their tissues at concentrations at least
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100 times above the normal and at values greater than
1000 mg kg�1 (0.1%) (Brooks et al., 1977; Nedelkoska and Doran,
2000). Hyperaccumulor plants are taxonomically well-
represented in the plant kingdom (Sheoran et al., 2009). Among
them, Alyssum murale Waldst. & Kit, a Brassicaceae, has attracted a
growing interest over the last decade (Bani et al., 2007; Rue et al.,
2015; Durand et al., 2016) and much experimental evidence
clearly shows that this species could be used in 'agromining'.
Agromining is a non-destructive approach to the recovery of high
value metals from metal-enriched soils and ores and could provide
multiple ecosystem services, such as provisioning services (e.g.
metal, fuel-biomass) and supporting services (e.g. amelioration
over time, of the fertility of ultramafic soils). In this context, the use
of the nickel-hyperaccumulator A. murale has been proven to be
economically feasible in Europe (Albania), based on successful field
experiments (Bani et al., 2007, 2015; Van der Ent et al., 2013, 2015;
Saad et al., 2016). This hyperaccumulator plant is commonly found
on ultramafic soils and can grow with an altitudinal extension
ranging from sea level to 2000 m.a.s.l. Altitudinal gradients,
recognized as useful “natural experiments” since they are charac-
terized by dramatic changes in climate and abiotic characteristics,
are determinants of the structure of soil microbial communities
(Lauber et al., 2009; Andrew et al., 2012; Stomeo et al., 2012; Siles
et al., 2017).

Despite the long history of interest in ultramafic flora and metal
hyperaccumulator plants, the attention of microbiologists towards
bacteria from ultramafic and metal-polluted soils is more recent,
with the relevant exception of Lipman (1926). However, it is
essential to better understand the close correlations between
rhizosphere microorganisms, host plants and surrounding soil, as
well as the genetic diversity of rhizosphere bacterial communities
in these ultramafic areas. Indeed, it is known that the rhizosphere
bacterial community can, for instance, in the case of the Ni-
hyperaccumulator A. murale, promote plant development on
contaminated or naturally metalliferous soils (Reeves and Adigüzel,
2008; Durand et al., 2016). Moreover, it has been shown that mi-
crobial communities in such soils influence the mobility and
availability of pollutants to plants (Sessitsch et al., 2013; Cabello-
Conejo et al., 2014). Thus, despite the recent interest paid to the
study of these microbial communities in naturally metal-rich soils,
few studies have focused on the characterization of the community
structure based on taxonomic marker genes of rhizosphere bacte-
rial communities of Ni-hyperaccumulator plants (Kumar et al.,
2009; Mengoni et al., 2010).

The specific aim of the current work was to investigate the ge-
netic diversity of bacterial communities present in the rhizosphere
of the Ni-hyperaccumulator plant A. murale growing on ultramafic
soils, by using tag-encoded pyrosequencing of the 16S rRNA. To our
knowledge, this study is the first aimed at characterizing the
microbiome of A. murale rhizophere using 454-pyrosequencing of
the 16S rRNA gene approach and investigating the potential influ-
ence of edaphic factors (i.e. altitude gradient and Ni availability).

2. Materials and methods

2.1. Site description and sampling

Rhizosphere samples of A. murale, from ultramafic areas, were
collected in the Northern Pindus Mountains (Greece) from 5 sites
across an elevation gradient (from 860 to 1837m) (site I: Trigona, N
39�47017.5” E 21�25019.1”, 860 m; site II: Perivoli, N 39�5906” E
21�0,7024.2”, 1216 m; site III: Vovoussa, N 39�5206.6” E 21�2059.2”,
1560 m; site IV: Katara Pass, N 39�47045.9” E 21�13044.3”, 1690 m;
site V: Valia Kalda, N 39�54031.7” E 21�0,7025.4”, 1837m) in summer
2014. Indeed, this area is known to present soils derived from
ultramafic rocks (Chardot et al., 2005; Reeves et al., 2009). What-
ever the altitude gradient, A. murale was able to grow and despite
this altitude gradient, the plants were all harvested at the flowering
stage. At each site, three samples of rhizosphere soil of A. murale
were taken (5 plots, 3 replicates per plot). Rhizosphere soil was
defined as the soil attached to roots after gentle shaking by hand.
All samples were brought back to the laboratory as soon as possible
and were stored at 4 �C until processed not longer than 4 days. The
soil was sieved at 2 mm and thoroughly homogenized; one portion
was air-dried for soil property analysis and the other stored
at �20 �C for DNA extraction.

The physico-chemical characteristics of the rhizosphere soils
were determined by the INRA Laboratory of Soil Analyses, Arras
(France), using samples that had previously been air-dried and
sieved following French standardized methods (AFNOR, 2004).

Soil moisture content was determined by heating subsamples to
105 �C until a constant weight was achieved. Available elements in
soil samples were extracted with a DTPAeTEA solution (0.005 M
diethylene triamine pentaacetic acid, 0.01 M calcium chloride
dihydrate, 0.1 M triethanolamine, pH 7.3) according to Lindsay and
Norvell (1978) and concentrations in solutions weremeasuredwith
an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-
AES, Liberty II, Varian). Soil samples (500mg subsample) were acid-
digested using freshly prepared Aqua Regia (6 mL 37% hydrochloric
acid and 2 mL 70% nitric acid per sample) for a 2-h program and
diluted with distilled water to 50 mL before ICP-AES analysis of
pseudo-total elements. Soil pH was measured using a pHmeter in a
soil/water solution mixture (soil water ratio: 1/5).

2.2. Soil DNA extraction and tag-encoded pyrosequencing of
bacterial communities

Total genomic DNAwas extracted from 0.5 g soil samples using a
Fast DNA® SPIN Kit for Soil (MP BioMedicals) according to the
manufacturer's instructions. The concentration and quality (ratio of
A260/A280) of the DNA were determined with a spectrophotom-
eter (SmartSpec™ Plus, Bio-Rad). For the 15 soil samples (5 sites, 3
samples per site), barcoded amplicon sequencing was performed
by Mr DNA (Shallowater, TX, USA), using the primer set 799f-1394r
(chosen because it does not amplify non-target chloroplast se-
quences) targeting the V5-V6 region of the 16S rRNA gene
(Santhanam et al., 2014). Briefly, a single-step 30 cycle PCR using
HotStarTaq Plus Master Mix Kit (Qiagen, USA) was used under the
following conditions: 94 �C for 3min, followed by 28 cycles of 94 �C
for 30 s; 53 �C for 40 s and 72 �C for 1 min; after which a final
elongation step at 72 �C for 5minwas performed. Following PCR, all
amplicon products from different samples were mixed in equal
concentrations (40 ng mL�1) and purified using Agencourt Ampure
beads (Agencourt Bioscience Corporation, MA, USA). Sequencing
was performed on a Roche 454 following the manufacturer's
guidelines.

2.3. Processing of pyrosequencing data

All sequence analyses were conducted using the QIIME pipeline
(Caporaso et al., 2010). In brief, sequences were first selected ac-
cording to the following criteria: (i)� 200 nucleotides in length, (ii)
a perfect match to the primers and the barcodes and (iii) no
ambiguous base allowed. After denoising, sequences of chloro-
plastic or mitochondrial origin were removed from the bacterial
dataset using the software Metaxa (Bengtsson et al., 2011). The
software V-Xtractor (Hartmann et al., 2010) was then used to
extract the V5-V6 region of the bacterial 16S rRNA gene. Bacterial
sequences were then binned into OTUs, using a 97% identity
threshold and the most abundant sequence from each OTU was
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selected as a representative sequence for that OTU. Taxonomy was
assigned to OTUs, by using the Basic Local Alignment Search Tool
(BLAST) for each representative sequence against the Greengenes
13_8 reference database for bacteria (97% similarity) and the final
nucleotide sequences obtained were deposited in the GenBank
database (http://www.ncbi.nlm.nih.gov/genbank/) under accession
numbers KX966532.1 e KX967491.1.

2.4. Statistical analysis

In order to relate the relative abundance of the dominant bac-
terial phyla in each soil samples to the soil physicochemical vari-
ables, we used a Canonical Correspondence Analysis (CCA). Analysis
was carried out using the software package Canoco 4.5 (Ter Braak
and Smilauer, 2002). Simple linear regression analysis was used
to determine correlations between the relative abundances of key
phyla and available nickel concentrations with StatBox software
(Grimmersoft, Paris, France, http://www.statbox.com). We used the
envfit function of Vegan package in R software (version 3.3.1) to
obtain the p-value of correlation of each physicochemical variable
with bacterial families of the dominant phyla. This allowed us to
eliminate variables without any correlation to bacterial community
diversity. These variables were excluded from the correlation ana-
lyses between physicochemical variables and bacterial families for
the heatmap construction. For the physicochemical variables
dataset, the cut-off for significance was set at p < 0.15, which for a
single parameter is equivalent to the commonly used Akaike's In-
formation Criterion (AIC) for model selection. Only significant
correlations with p-value less than 0.10 were conserved.

3. Results

3.1. Soil properties

The reported characteristics were typical of ultramafic soils
(Table 1) i.e. low concentrations of Ca, K, and P, elevated Ni, Mn, Mg
and Fe. The pseudo-total Ni reached 2320 mg kg�1 in soil I. The
Table 1
Chemical and physical properties of Alyssum murale rhizosphere soils.

Sites I

Elevation (m a.s.l.) 860
Texture Clay
pH 7.03
Organic C (g kg�1) 62.9
Total N 4.42
Olsen P 0.024
Pseudo-total major elements Al (g kg�1) 12

Ca 2
Fe 70
K 2
Mg 36
Mn 1
Na 0

Pseudo-total trace elements Ni (mg kg�1) 2320
P 332
S 342
Zn 97

Available metal Cu (mg kg�1) 0.109
(extractable by DTPA) Fe 67.95

Mn 1.81
Ni 247.84
Zn 0.179

CEC total (cmol þ kg�1) 64.72
Exchangeable cations Ca 1.073

K 0.047
Mg 2.297
Mn 0.002
Ni 0.015
Mg:Ca ratio was high (6.2e19.8), and the ratio of exchangeable
Mg:Ca ranged from 0.28 to 1.30. The pseudo-total K concentration
in these soils (ranging from 0.3 to 0.8%) was very low, as was
exchangeable K (18.20e27.23 cmolþ kg�1). Olsen-extractable P was
also quite low (0.014e0.040 g kg�1). Soil pH ranged from 6.28 to
7.03. The range of available Ni concentrations in the rhizosphere
soils sampled was not correlated with the elevation gradient.

3.2. Rhizosphere bacterial diversity

A total of 46 260 bacterial sequences were obtained from the
five sites analyzed with a mean of 3015 reads per sample (ranging
from 1653 in the Site V to 5124 in the Site II). These sequences were
clustered into 983 OTUs.

At the phylum level, there were 21 major bacterial taxa present
within most sites. Across all studied sites, the most abundant
bacterial groups, with a relative abundance greater than 1%, were
Chloroflexi (63.5% ± 11.9%), Actinobacteria (15.8% ± 7.3%), Proteo-
bacteria (8.2%± 4.3%), TM7 (4.7%± 3.0%), Bacteroidetes (2.9% ± 1.5%),
Gemmatimonadetes (1.1% ± 0.8%) and Acidobacteria (1.2% ± 0.6%).
The taxa exhibited different relative abundances among sites
(Fig. 1). The major phylum within A. murale rhizosphere in ultra-
mafic soils was Chloroflexi that was present with more than 50% of
relative abundance, accounted around 66% of the whole bacterial
population (Fig. 1). The major family in this phylum was Kouleo-
thrixaceae with UG6 and Kouleothrix (Fig. 2A) with a relative
abundance of around 37%, that is to say 25% of the total bacterial
population. The second best represented phylum was Actino-
bacteria (with a relative abundance of 5e24%) (Fig. 1). The unde-
termined genera UG26 of the Solirubrobacterales order mainly
represents this phylum, with a relative abundance of around 20%
(Fig. 2B), far below Chloroflexi. The Proteobacteria phylum, which
was around 8% of the total abundance (Fig. 1), was well represented
with the families Hyphomicrobiaceae (from UG7 to Rhodoplanes)
and Bradyrhizobiaceae (from UG6 to Bradyrhizobium) having
abundance levels of around 15% and 14% respectively (Fig. 2C).
These two families belong to the Alphaproteobacteria, which was
II III IV V

1216 1560 1690 1837
Sandy loam Silty loam Silty loam Silty clay
6.67 6.69 6.84 6.28
109 37.8 24.9 141
5.45 2.05 2.08 2.59
0.014 0.014 0.04 0.015
16 23 9 21
11 8 8 10
73 83 61 70
2 4 1 3
73 84 152 63
1 2 1 1
0 0 0 0
1571 1414 1931 1552
537 361 509 844
637 232 563 959
96 81 128 109
0.15 0.156 1.022 0.158
100.71 160.81 61.35 160.86
41.9 20.53 20.6 1.4
167.94 67.85 120.69 300.65
0.31 0.123 0.903 0.379
66.63 79.71 90.83 65.95
2.523 0.784 0.925 2.452
0.070 0.069 0.055 0.063
1.209 1.526 0.620 1.137
0.007 0.006 0.003 0.005
0.005 0.008 0.006 0.023
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http://www.statbox.com


Fig. 1. Relative abundance of the dominant bacterial phyla in each soil sample (I to V).
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well represented among Proteobacteria with an average of 60% for
the 5 soils, while the Betaproteobacteria, Deltaproteobacteria and
Gammaproteobacteria represent respectively only 16, 18 and 5% of
the totality of the Proteobacteria.

The bacterial diversity and richness of the different sites were
calculated. Soils I and V had a greater diversity based on the
Shannon index (7.29 ± 0.43 and 6.92 ± 1.06, respectively) than Soil
III (6.05 ± 0.14). The soils II and IV showed intermediate Shannon
index values (respectively, 6.84 ± 0.69 and 6.85± 0.59). Soil III had a
lower richness based on the Chao1 index (348 ± 17) than the other
four soils (nearly 370). The rarefaction curves (data not shown)
indicated that all the samples studied tended to reach a saturation
plateau. This means that the sequence coverage was still sufficient
to capture the diversity of bacterial community.

A Canonical Correspondence Analysis (CCA) was performed to
characterize the effect of environmental variables (soil properties
and sites, Table 1) on the most abundant phyla (Fig. 3). The main
plan explains 88.8% of the total variation. CCA linked Actinobacteria,
Gemmatimonadetes, Acidobacteria, Bacteroidetes and Proteobacteria
with the highest concentrations of available Ni and the higher
values of exchangeable Ni (determined by Ni-CEC). These charac-
teristics refer to Soils I and V (Ni.DTPA 250 and 300 mg kg�1,
respectively), although these two soils showed different pH values
(7.03 and 6.28, respectively) and contrasting altitudes (860 and
1837 m, respectively). Conversely, in the Soil III (Ni.DTPA
65 mg kg�1, pH 6.69, altitude 1560 m, organic carbon 2 to 3 times
lower than in Soils I and V) TM7 were predominant, as to a lesser
extent, were Chloroflexi. Their presence was correlated with the
lower contents of available Ni and higher Mn and K concentrations.

The influence of available Ni was evident at the phylum level,
since the relative abundance of the three dominant bacterial phyla
(Chloroflexi, Proteobacteria, Actinobacteria) changed in a concurring
manner across the available Ni gradient (Fig. 4). The relative
abundance of Proteobacteria and Actinobacteria increased with
available Ni, whilst Chloroflexi showed the opposite pattern. These
results suggest that locally available Ni is, directly or indirectly, a
fundamental catalyst of soil bacterial community composition and
diversity in the rhizosphere of A. murale, regardless of the elevation
(climatic) gradient.

A correlation analysis was performed between the physico-
chemical variables selected by the envfit function of the Vegan
package in R software (6 variables: Fe.DTPA, Ni.DTPA, pH, CEC.Ca,
CEC.Ni and Organic.C) and the 113 bacterial families from the 3
major phyla of A. murale rhizosphere (36 Actinobacteria, 28 Chlor-
oflexi and 49 Proteobacteria, respectively). Whatever the bacterial
family, heatmaps showed 146 significant correlations between
physicochemical variables and bacterial families with 79 positive
and 67 negative correlations (Fig. 5). For the Chloroflexi phylum
(Fig. 5A), there were in total 52 significant correlations with 30
positives and 22 negatives. In Chloroflexi phylum, the Kouleothrix-
aceae family showed a relative abundance of around 37% in the 5
sites. The correlation between the relative abundance of Kouleo-
thrixaceae and Ni.DTPA, CEC.Ca and Organic.C was negative. For the
Actinobacteria phylum (Fig. 5B), we observed in total 60 correla-
tions: 28 positives and 32 negatives. The most represented family
in Actinobacteria phylum belongs to the order of Solirubrobacterales
and its relative abundance (around 20%) was negatively affected by
Fe.DTPA and positively by CEC.Ca. Among the Actinobacteria
phylum, the Gaiellaceae family (around 7% of representativeness)
was weakly correlated to organic.C and pH, but conversely showed
a strongly positive correlation with Ni.DTPA and CEC.Ni. This last
observation corroborated the fact that the relative abundance of
the Actinobacteria phylum, to which this family belongs, increased
with the Ni.DTPA concentrations present in soils (Fig. 4). Finally,
there were 34 significant correlations for the Proteobacteria phylum
(Fig. 5C) with 21 positive and 13 negatives correlations. At the
family level, more than a third of these positive correlations depend
on the CEC.Ni. In the Proteobacteria phylum, among the 13 families
affected by CEC.Ni, 8 were positively correlated with CEC.Ni and
among the 4 families affected by the Ni.DTPA, 3 were positively
affected (Hyphomonadaceae, Entotheonellaceae and Haliangiaceae).
This may explain why the relative abundance of Proteobacteria
increased with available Ni (Fig. 4).

4. Discussion

4.1. 16S rRNA gene amplicon sequencing

An increasing number of studies have attempted to characterize
how microbial distribution patterns respond to environmental
factors (Nielsen et al., 2010; Rousk et al., 2010). The conclusions of
previous studies regarding ultramafic ecosystems have been
limited by the techniques used (Lenczewski et al., 2009; Bordez
et al., 2016). The application of analyses based on 16S rRNA gene
amplicon sequencing is routinely used today to analyze the mi-
crobial communities of various ecosystems, with wide application
in the study of soils and recently ultramafic ecosystems (Chodak
et al., 2013; Gołębiewski et al., 2014; Yasir et al., 2015). However,
to our knowledge, no study has ever investigated the bacterial di-
versity in the rhizosphere of a hyperaccumulator plant, such as
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A. murale, growing on ultramafic soils. Indeed, next-generation
sequencing (NGS) technologies, such as Roche/454, have been
used to study the rhizobiome of Arabidopsis thaliana, Populus del-
toides, Lactuca sativa and Zea mays, in TE-contaminated-soils and
recently in ultramafic soils (Bordez et al., 2016), but this approach
has not yet been used to characterize the microbial community
associated with the rhizosphere of Ni-hyperaccumulators. So, the
application of the analyses based on 16S rRNA gene amplicon
sequencing to ultramafic ecosystems was expected to greatly
expand our knowledge of the microorganisms inhabiting these
environments (vonWettberg andWright, 2011; Bordez et al., 2016)
and therefore appears to be an essential approach for investigating
the diversity and ecology of the hyperaccumulator rhizobiome
(Visioli et al., 2015).

4.2. Dominant phyla in A. murale rhizosphere

Our study revealed the presence of 21 phyla, amongwhich 7 had
a relative abundance greater than 1%. These were Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Pro-
teobacteria and TM7. These genera have been found in both the
rhizosphere and the endosphere of hyperaccumulators, regardless



Fig. 3. Canonical Correspondence Analysis (CCA) of bacterial rhizosphere phyla and the soil physicochemical variable scores. (A) Ordination biplot of bacterial rhizosphere phyla and
soil physicochemical parameters. (B) Ordination biplot of the sample sites and the soil physicochemical variable scores. (Cu.DTPA, Fe.DTPA, Mn.DTPA, Ni.DTPA, Zn.DTPA: bioavailable
Cu, Fe, Mn, Ni, Zn extracted with DTPA (mg kg�1); CEC.Ca, CEC.K, CEC.Mg, CEC.Mn, CEC.Ni: Ca, K, Mg, Mn, Cation Exchange Capacity (mg kg�1); CEC: Total Cation Exchange Capacity
(cmolþ kg�1); SM: soil moisture (%); C/N: ratio carbon/nitrogen; P.olsen: phosphore (g kg�1); pH: soil pH values).
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of the specific metal composition of the soil (Visioli et al., 2015). The
presence of the 7 major phyla observed in our study confirmed
Janssen's results (2006) which showed that, based on a study of the
sequences of the 16S rRNA genes from 21 libraries, soil bacterial
communities found in bulk soils were dominated by 9major groups
in the following order of importance: Proteobacteria, Acidobacteria,
Actinobacteria, Verrucomicrobia, Bacteroidetes, Chloroflexi, Plancto-
mycetes, Gemmatimonadetes and Firmicutes. In the same way, in
their study, Bordez et al. (2016) showed that most abundant bac-
terial groups were Proteobacteria and Acidobacteria, followed by
Actinobacteria, Planctomycetes, Verrucomicrobia and Chloroflexi.
However many biotic and abiotic parameters are involved in the
structuration and establishment of soil bacterial communities, both
in terms of diversity and size (Borneman et al., 1996).

In our study, the major phylumwithin the A. murale rhizosphere
in ultramafic soils was Chloroflexi, being present at more than 50%
of relative abundance. Until now, most soil pyrosequencing ana-
lyses have shown that the phylum Proteobacteria was dominant,
with only a proportion of Chloroflexi, which ranged from 1.7 to
10.3% (Chodak et al., 2013; Gołębiewski et al., 2014; Yasir et al.,
2015). Yet, to our knowledge, no study has ever targeted the di-
versity of bacterial communities of A. murale rhizosphere growing
on ultramafic soils and therefore, it is impossible to say whether
this observation is specific to the rhizosphere of A. murale or
common to all rhizosphere of Ni-hyperaccumulator plants. Never-
theless, to date the natural environments where the phylum
Chloroflexiwas detected in abundancewere: hot springs (10e15% of
the phylotypes detected were related to the Chloroflexi phylum),
hypersaline microbial mats (2139% of the bacterial rRNA clones
analyzed were those of the Chloroflexi phylum), geothermal soils,
low-temperature meadow soils, sea and lake sediments, and hy-
drothermally active sediments (Yamada and Sekiguchi, 2009), thus
suggesting that this phylum is abundant in extreme conditions
(Boomer et al., 2002; Nübel et al., 2002). Ultramafic soils, which are
deficient in essential plant nutrients but enriched with heavy
metals such as nickel, are considered as stressed environments due
to their extreme mineral composition (Pal et al., 2005; Mengoni
et al., 2010) for most plant species and for many microorganisms
(Lipman,1926). Among the Chloroflexi phylum, the Kouleothrixaceae
family was the most represented. Chloroflexi have been character-
ized as bacteria specialized in polysaccharide degradation pro-
duced by other microorganisms and on decaying cells (Kragelund
et al., 2007). It is known that (i) among rhizodeposits, mucilage,
which improve root penetration into soil and play an important
role in resistance to drought, are composed of polysaccharides and
(ii) this mucilaginous layer has been frequently observed on the
root surface of many plants and more particularly at the root tip
(Nguyen, 2003).

In our study, the second most represented phylum was Actino-
bacteria, although far below Chloroflexi. The predominance of this
phylum can be explained by the high adaptability of these Gram-
positive bacteria to toxic concentrations of metals in soils. Nickel
was investigated in particular for cellular adaptive responses in
Actinobacteria (Schmidt et al., 2005) and it has been shown that
their strong secondary metabolism enables them to cope with



Fig. 5. Representation of significant correlation analysis between 6 physicochemical variables (Fe.DTPA, Ni.DTPA, pH, CEC.Ca, CEC.Ni and Organic.C) and bacterial families for the
three major phyla Chloroflexi (A), Actinobacteria (B) and Proteobacteria (C). The y-axis depicts the 6 variables and the x-axis the 113 bacterial families. The heatmap shows significant
correlation (p-value < 0.10) with blue squares for positive changes in relative abundance and red squares for negative changes. The intensity of color correlates with the magnitude
of the correlation value. UF: Undetermined Family.
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stress factors including toxic levels of heavy metals (So et al., 2001).
Moreover, The abundance of Actinobacteria in ultramafic soil or
polluted soils has already been detected by several authors (Abou-
Shanab et al., 2010). These studies confirmed the high adaptability
of these Gram-positive bacteria to toxic concentrations of metals
(DeGrood et al., 2005). Indeed, at the phylum level, the relative
abundance of Actinobacteria was positively correlated with soil
available Ni regardless of the elevation (climatic) gradient. In
addition, the Gaiellaceae family showed a strongly positive corre-
lation with Ni.DTPA and CEC.Ni. These observations confirmed the
previous results underlined the adaptability of these bacteria to
toxic concentrations of metals present in soils. Moreover
Szoboszlay et al. (2016) highlighted the influence of flavonoid
compounds (e.g. 7,4'-dihydroxyflavone) on Gaiellaceae develop-
ment and their interactionwith plant hosts. Flavonoids play amajor
role in the hyperaccumulation process, by allowing the formation of
a complex with metal for uptake and root-to-shoot transport
(Barcel�o and Poschenrieder, 2003). We can hypothesize that fla-
vonoids could be exudated by A. murale and could explain the
presence of this family in the rhizosphere of this hyperaccumulator
plant. Gaiellaceae is a novel family within the Actinobacteria class
and what is known, is that members of this family are strictly
aerobic and chemoorganotrophic (Albuquerque et al., 2011). The
chemoorganotrophic bacteria are capable of growing on accumu-
lated organic matter from dead cells and trapped debris, which
could explain their great abundance in Soil V, which is character-
ized by the highest amount of Organic C (141 g kg�1).

The Proteobacteria phylum, which is around 8% of the total
abundance, was well represented by the Hyphomicrobiaceae and
Bradyrhizobiaceae families, with abundance levels of around 15%
and 14% respectively. The relatively low presence of Proteobacteria
in ultramafic soils could be correlated to the fact that these bacteria
are r-strategists, found in rich environments, and also known to be
sensitive to toxic pollutants (Kunito et al., 2001). Indeed, Ellis et al.
(2003) found in their study focusing on five different metal-
contaminated soils that the Gammaproteobacteria (mainly Pseudo-
monas spp. and a Xanthomonas sp.) increased in relative abundance
in the least-contaminated soil samples, while Alphaproteobacteria
were absent. On the other hand, it has been shown that bacteria
belonging to the alpha-subdivision of Proteobacteria might have
selective advantages over other bacteria in soils with high metal
amendments (Sandaa et al., 1999). A possible explanation might be
an increase in numbers of transferable plasmids mediating metal
resistance with increasing metal contamination and therefore the
relative abundance of members of the alpha-subdivision of Pro-
teobacteria, might be caused by an increase in one initially resistant
population of a member of this subdivision. Another hypothetical
explanation is the occurrence of plasmid-mediated transfer of
heavy metal resistance within members of the alpha-subdivision of
Proteobacteria (Sandaa et al., 1999). In our study, the genera
belonging to the alpha-subdivision of Proteobacteria (Bradyrhi-
zobium, Rhodoplanes and those belonging to Rhodospirillaceae and
Sphingomonadaceae) showed a relative abundance among the most
represented divisions, such as those belonging to the delta-
subdivision of Proteobacteria (Myxococcales order). However, it is
mainly those families that belong to the delta-subdivision of Pro-
teobacteria which were positively correlated with CEC.Ni and
Ni.DTPA. Nevertheless, Gołębiewski et al. (2014) have questioned
the sensitivity of this phylum, as their study found a great abun-
dance of Proteobacteria in multi-contaminated soils by metals such
as Cr, Zn and Pb.

Siles et al. (2017) underlined in their study the effect of altitu-
dinal gradient on structure, abundance and microbial activities.
Indeed, they showed that the temperature, linked with elevation
gradient, induce modifications in the microbial proliferation. In our
study, whatever the major phylum considered, the elevational
gradient showed no effect on bacterial diversity. These results were
in accordance with those of Fierer et al. (2011); both at the whole
community level and at the level of individual phyla, there was no
significant influence of elevation on bacterial diversity.

5. Conclusion

Our observations that underlined the effect of available Ni on
the diversity of bacterial communities also confirmed the results
obtained with other pollutants, e.g. Hg (Müller et al., 2001) or Cr
(Desai et al., 2009). These findings underscore the complexity of
interactions between physicochemical parameters and soil bacte-
rial diversity, because of the complexity of the action and interac-
tion of many factors where diversity is concerned. Indeed, other
factors were previously known to affect the composition of bacte-
rial communities, such as pH (Lauber et al., 2009; Rousk et al.,
2010), nutrient availability, trace metal solubility (Müller et al.,
2002), soil carbon (Asuming-Brempong et al., 2008) and nitrogen
content (Fierer et al., 2007), or soil moisture and climate variations
(Lauber et al., 2009). Conversely, in the rhizosphere of A. murale
grown on ultramafic soils, we found no evidence for an elevational
gradient in bacterial diversity as there was no significant relation-
ship between elevation and the genetic structure of the bacterial
communities.

The next step of this research will be to expand the observations
to other ultramafic areas under other climatic conditions. In
particular, ultramafic bedrock is widespread and extensive in
tropical regions such as Cuba, New Caledonia or Indonesia (Van der
Ent et al., 2013), e.g. in Sulawesi (about 15 400 km2 of ultramafic
outcrops) or in Northern Maluku (8000 km2 of ultramafic out-
crops). Then, it will be possible to verify the predominance of
Chloroflexi in ultramafic soil bacterial communities. The role and
significance of this phylum in such stressful ultramafic environ-
ments will have to be investigated and understood.
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