Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

UR 1264 - MYCSA : Mycologie et securite des aliments

MycSA

Mycologie & Sécurité des Aliments
INRA Bordeaux-Aquitaine
BP 81
33883 Villenave d'Ornon Cedex

Our new article in International Journal of Food Microbiology

09 May 2017

Cendoya et al.
Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate.

Cendoya E., Pinson-Gadais L., Farnochi M.C., Ramireza, M.L., Chéreau S., Marcheguay G., Ducos C., Barreau C., Richard-Forget F. (2017). Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate. International Journal of Food Microbiology  253: 12-19.

Fusarium proliferatum produces fumonisins B not only on maize but also on diverse crops including wheat. Using
a wheat-based medium, the effects of abiotic factors, temperature and water activity (aw), on growth, fumonisin
biosynthesis, and expression of FUM genes were compared for three F. proliferatum strains isolated from durum
wheat in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles
were slightly different. Regarding FUM gene transcriptional control, both FUM8 and FUM19 expression showed
similar behavior in all tested conditions. For both genes, expression at 25 °C correlated with fumonisin
production, regardless of the aw conditions. However, at 15 °C, these two genes were as highly expressed as at
25 °C although the amounts of toxin were very weak, suggesting that the kinetics of fumonisin production was
slowed at 15 °C. This study provides useful baseline data on conditions representing a low or a high risk for
contamination of wheat kernels with fumonisins.