Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal

UR 1264 - MYCSA : Mycologie et securite des aliments


Mycologie & Sécurité des Aliments
INRA Bordeaux-Aquitaine
BP 81
33883 Villenave d'Ornon Cedex

HISTOVAR- our new research Project

"Role of the histone variant H2A.Z in phytopathogenic fusaria"

30 August 2018

Scientific project MycSA
An International collaborative research project funded by ANR (France) and FWF,(Austria)

Fusaria are among the most important group of phytopathogenic fungi infecting various economically important host plants worldwide. Besides enormous crop losses caused by these fungal attacks, fusaria are able to produce a diverse spectrum of natural compounds, referred to as secondary metabolites. These compounds include mycotoxins that frequently contaminate food and feed, thereby posing a serious health threat to animals and humans when consumed. A crucial step towards the development of efficient and durable strategies against fungal infections and contaminations with mycotoxins is to understand the regulatory network that orchestrates pathogenesis and secondary metabolite biosynthesis. Gene expression in eukaryotes functions within the context of chromatin. This includes histone posttranslational modifications that do not alter the DNA sequence, but affect the read out thereof, i.e. inducing or silencing expression of the underlying genes. These histone marks emerge more and more as key factors in regulating fungal virulence and secondary metabolism. Our working hypothesis is that during fungal development and during infection of the plant, the chromatin structure is dynamic and driven by changes in the histone marks deposited on the genome. These changes allow the expression of virulence- and secondary metabolite-related genes hitherto silent as optionally embedded in repressive chromatin. Among known eukaryotic histone marks, although regularly found as decorating transcriptionally active genes, the role of the variant H2A.Z remains to date a riddle, with conflictual roles often described for the same organisms. The function of H2A.Z in fungi has, to date, received very little attention. HISTOVAR proposes to focus on the chromatin dynamics in the two prominent Fusarium spp., Fusarium fujikuroi and Fusarium graminearum, infecting rice and wheat, respectively, and to study the role of so far overlooked – but likely essential – mechanisms involving H2A.Z during secondary metabolism and pathogenesis. HISTOVAR is a collaborative project between an Austrian and a French research group who both aim at, ultimately, finding the Fusarium’s “Achilles’ heel” that could serve as preferential target(s) for efficient, durable, and environment-friendly fighting strategies against fungal infections and mycotoxin contamination. By a combination of reverse genetics and whole genome approaches (transcriptome, metabolome and epigenome analyses), HISTOVAR will provide groundbreaking knowledge regarding the function of H2A.Z in fungal development, pathogenicity, and secondary metabolism.

A collaboration between MycSA and Fungal Genetics and Genomics Unit, BOKU-University of Natural Resources and Life Sciences, Vienne, Autria ( )