Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Logo Biogeco Logo Université de Bordeaux

Home page

Dispositif QTL chêne

Nom du dispositif
Dispositif QTL chêne
Localisation
Pierroton (33), Champenoux (54), Bourran (47)

Map_QTL_Chene

Type de dispositif
Dispositif expérimental
Mono ou multi-site
Multi-site
Insertion dans un réseau
Non
Site Web
http://mapedigree.pierroton.inra.fr/
Description
Ce dispositif est composé de plusieurs familles issues de croisements intra et interspécifiques de chênes. Les descendants plein-frères de ces croisements sont clonés par bouturage. Les dispositifs expérimentaux sont constitués de blocs incomplets à composition aléatoire.
Date(s) d'installation
A partir de 1997
Surface
10 ha
Type de substrat
Espèces structurantes
Quercus robur, Quercus petraea et leurs hybrides
Variables testées/observées
Génotype et phénotype
instrumentation-équipement particulier
Filets pour quantifier la reproduction
Nature des données / type de mesures
Marqueurs génétiques, séquences ADN, traits phénotypiques
Disponibilité des données
Mapedigree
Gestionnaire des données
François Ehrenmann
Contact scientifique
Benjamin Brachi et Grégoire Le Provost
Partenaires (installation/gestion/suivi)
UEFP
UE arboricole
Publications
  • Bartholomé, Jérôme, Benjamin Brachi, Benoit Marçais, Amira Mougou‐Hamdane, Catherine Bodénès, Christophe Plomion, Cécile Robin, and Marie-Laure Desprez‐Loustau. 2020. The Genetics of Exapted Resistance to Two Exotic Pathogens in Pedunculate Oak.” New Phytologist 226: 1088–1103
  • Caignard T, Delzon S, Bodénès C, Dencausse B, Kremer A 2019. Heritability and genetic architecture of reproduction-related traits in a temperate oak species. Tree Genetics & Genomes 15, 1
  • Song J, Brendel O, Bodenès C, Plomion C, Kremer A, Colin F  2017  X-ray computed tomography to decipher the genetic architecture of tree branching traits: oak as a case study. Trees Genetics & Genomes  13:5
  • Bodénès C, Chancerel E, Ehrenmann F, Kremer A, Plomion C (2016) High density linkage mapping and distribution of segregation distorsion regions in oak genome.  DNA Research 23: 115-124
  • Lepoittevin C, Bodénès C, Chancerel E, Villate L, Lang T, Lesur I, Boury C, Ehrenmann F, Zelenica D, Boland A, Besse C, Garnier‐Géré P, Plomion C, Kremer A 2015, Single-nucleotide polymorphism discovery and validation in high density SNP array for genetic analysis in European white oaks. Mol Ecol Res 15: 1446-1459
  • Bodénès C, Chancerel E, Gailing O,  Vendramin GG, Bagnoli F, Durand J, Goicoechea PG, Soliani C, , Villani F, Mattioni C,  Koelewijn HP,  Murat F, Salse J,Roussel G, Boury C, Alberto F, Kremer A, C. Plomion 2012. Comparative mapping in the Fagaceae and beyond using EST-SSRs. BMC Plant Biology 12:153 doi:10.1186/1471-2229-12-153
  • Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn HP, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z, Cabané C, Ueno S, de Daruvar A, Kremer A, Plomion C 2010 SSR mining in oak ESTs and bin mapping of 256 loci in a Quercus robur L. full-sib pedigree. BMC Genomics 11: 570
  • Derory, J., C. Scotti-Saintagne, E. Bertocchi, L. Le Dantec, N. Graignic, A. Jauffres, M. Casasoli, E. Chancerel, C. Bodénès, F.Alberto and A. Kremer 2010. Contrasting correlations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 104 : 438-448
  • Brendel, O., D. Le ThieC, C. Saintagne, C. Bodénès, A. Kremer, and J.M. Guehl. 2008. Detection of quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genetics and Genomes 4(2):263-278
  • Kremer, A., M. Casasoli, T. Barreneche, C. Bodénès, P. Sisco, T. Kubisiak, M. Scalfi, S. Leonardi, E.G. Bakker, J. Buiteveld, J. Romero-Severson, K. Arumuganathan, J. Derory, C. Scotti-Saintagne, G. Roussel, M.E. Bertocchi, C. Lexer, I. Porth, F. Hebard, C. Clark, J. Carlson, C. Plomion, H. Koelewijn, and F. Villani. 2007. Fagaceae: comparative Genetic Mapping in Fagaceae. P. 161-187 in Genome Mapping & Molecular Breeding. Vol. 5: Forest Trees, Kole, C.R. (ed.). Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
  • Parelle, J., M. Zapater, C. Scotti-Saintagne, A. Kremer, Y. Jolivet, E. Dreyer, and O. Brendel. 2007. Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant, Cell and Environment 30:422-434.
  • Casasoli, M., J. Derory, C. Morera-Dutrey, O. Brendel, I. Porth, J.M. Guehl, F. Villani, and A. Kremer 2006. Comparison of QTLs for adaptive traits between oak and chestnut based on an EST consensus map. Genetics 172:533-546.
  • Gailing, O., A. Kremer, W. Steiner, H.H. Hattemer, and R. Finkeldey. 2005. Results on quantitative trait loci for flushing date in oaks can be transferred to different segregating families. Plant Biology 7(5):516-525.
  • Porth, I., M. Berenyi, C. Scotti-Saintagne, T. Barreneche, A. Kremer , and K. Burg. 2005. Linkage mapping of osmotic stress induced genes of oaks. Tree Genetics & Genomes 1(1):31-40.
  • Scotti-Saintagne, C., E. Bertocchi, T. Barreneche, A. Kremer, and C. Plomion. 2005. Quantitative trait loci mapping for vegetative propagation in pedunculate oak. Annals of Forest Science 62:369-374.
  • Barreneche, T., M. Casasoli, K. Russell, A. Akkak, H. Meddour, C. Plomion, F. Villani, and A. Kremer. 2004. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theoretical And Applied Genetics 108(3):558-566.
  • Saintagne, C., C. Bodénès, T. Barreneche, D. Pot, C. Plomion, and A. Kremer. 2004. Distribution of genomic regions differentiating oak species assessed by QTL detection. Heredity 92:20-30.
  • Scotti-Saintagne, C., C. Bodénès, T. Barreneche, E. Bertocchi, C. Plomion, and A. Kremer 2004. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theoretical and Applied Genetics 109:1648-1659.
  • Scotti-Saintagne, C., S. Mariette, I. Porth, P.G. Goicoechea, T. Barreneche, C. Bodénès, K. Burg, and A. Kremer. 2004. Genome Scanning for Interspecific Differentiation Between Two Closely Related Oak Species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168(3):1615-1626.
  • Barreneche, T., C. Bodénès, C. Lexer, J.F. Trontin, S. Fluch, R. Streiff, C. Plomion, G. Roussel, H. Steinkellner, K. Burg, J.M. Favre, J. Glössl, and A. Kremer. 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 55 rDNA markers. Theoretical and Applied Genetics 97(7):1090-1103.